Day 3: Combined Function Applications

Warm Up

Consider the power functions f(x), g(x), h(x), and i(x) and their combinations listed in the table below. Complete the following table:

Function	Is the function even, odd, or neither?	
f(x) = x	odd	
$g(x) = x^2$	even	
$h(x) = x^3$	odd	
$i(x) = x^4$	even	
f(x)g(x) = 3	odd	
$\frac{f(x)}{g(x)} = \frac{1}{2}$	add	
$\frac{g(x)}{f(x)} = \text{and} $	odel	
$f(x)h(x) = \mathcal{Z}^{4}$	even	
$g(x)i(x) = x^{6}$	even	
$\frac{h(x)}{f(x)} = \frac{\chi^3}{\chi} = \chi^2$	even	
$\frac{i(x)}{g(x)} = \frac{x \cdot 4}{2} = x^2$	even	

Even and Odd Symmetry of Product and Quotient Functions

When functions are multiplied or divided, their symmetry determines the symmetry of the product or quotient function.

Produ	ucts
Even \cdot Even =	even
$Odd \cdot Odd =$	even
Even $\cdot Odd =$	odd

Quotients	
$\frac{Even}{Even} = eVeN$	
$\frac{\partial dd}{\partial dd} = even$	
$\frac{Even}{Odd} = odd$	
$\frac{Odd}{Even} = Odd$	

Example One – Even and Odd Symmetry Given $f(x) = 2 \sin x$ and g(x) = |x|, determine the symmetry of f(x)g(x)

Example Two – Applications of Combined Functions

A fish pond initially has a population of 300 fish.

The fish population, P(t), grows as a function of time, t years as $P(t) = 300(1.05)^{t}$.

The pond initially has 1000 units of food, where 1 unit can sustain one fish for a year. The amount of fish food, F(t), is decreasing according to the function $F(t) = 1000(0.92)^t$.

PCF) growth by 526 initial P=300 FCF) is decaying by 826 FCF) is decaying by 826 initial population: 1000.

State the **domain and range** for each function. a)

D:	2+EIR1 + >> 03	
R:	2 YEIRI 4 2,300	Z

2 LEIR 1 - 1 > - 03 2 YEIR Y ≤ 10003

b) From the graph, state the **point of intersection** for the two functions.

c) Using the equations, verify the point of intersection algebraically. *Hint: use logs*

$$300 (1.05)^{t} = 1000 (0.92)^{t}$$

$$(1.05)^{t} = 1000$$

$$(1.05)^{t} = 1000$$

$$300$$

$$t = 109 (1000)$$

$$109 (1.05/92)$$

$$Fage | 11$$

