Day 3: Combined Function Applications

Warm Up

Consider the power functions $f(x), g(x), h(x)$, and $i(x)$ and their combinations listed in the table below.
Complete the following table:

Function	Is the function even, odd, or
neither?	
$f(x)=x$	odd
$g(x)=x^{2}$	even
$h(x)=x^{3}$	odd
$i(x)=x^{4}$	even
$f(x) g(x)=x^{3}$	odd
$\frac{f(x)}{g(x)}=\frac{1}{x}$	odd
$\frac{g(x)}{f(x)}=x$	odd
$f(x) h(x)=x^{4}$	even
$g(x) i(x)=x^{6}$	even
$\frac{h(x)}{f(x)}=\frac{x^{3}}{x}=x^{2}$	even
$\frac{i(x)}{g(x)}=\frac{x^{4}}{x^{4}}=x^{2}$	even

Even and Odd Symmetry of Product and Quotient Functions

When functions are multiplied or divided, their symmetry determines the symmetry of the product or quotient function.

Products
Even \cdot Even $=$ even
odd \cdot odd $=$ even
Even \cdot Odd $=$ odd

Quotients
$\frac{\text { Even }}{\text { Even }}=$ eUlA
$\frac{\text { odd }}{\text { Odd }}=$ QUe
$\frac{\text { Even }}{\text { Odd }}=$ odd
$\frac{\text { Odd }}{\text { Even }}=$ odd

Example One - Even and Odd Symmetry
Given $f(x)=2 \sin x$ and $g(x)=|x|$, determine the symmetry of $f(x) g(x)$
$h(x)=f(x) g(x)=(2 \sin x)(|x|$

$$
\begin{aligned}
& =f(x) g(x)=(2 \sin x)(|x| \\
& h(-x)=2 \sin (-x)|-x|=-2 \sin x|x|=-h(x)
\end{aligned}
$$

$\therefore h(x)$ is an odd function.

Example Two - Applications of Combined Functions
A fish pond initially has a population of 300 fish.
The fish population, $P(t)$, grows as a function of time, t years as $P(t)=300(1.05){ }^{t}$.
The pond initially has 1000 units of food, where 1 unit can sustain one fish for a year.
The amount of fish food, $F(t)$, is decreasing according to the function $F(t)=1000(0.92)$.
a) The graphs of $P(t)$ and $F(t)$ are shown below. Describe the shape of each exponential function.

Pf) growth by 5\% initial $p=300$
$F(t)$ is decaying by 82 invite population: 1000 .
$D: \quad\{t \in \mathbb{R} \mid t \geq 0\}$
$R:\{y \in \mathbb{R} \mid y \geqslant 300\}$

$$
\begin{aligned}
& \left\{\left.t \in \mathbb{R}\right|^{F(t)} t \geq, 0\right\} \\
& \{y \in \mathbb{R} \mid \quad y \leq 1000\}
\end{aligned}
$$

b) From the graph, state the point of intersection for the two functions.

$$
(9,465)
$$

c) Using the equations, verify the point of intersection algebraically. Hint: use logs

$$
\begin{aligned}
& 300(1.05)^{t}=1000(0.92) t \\
& \left(\frac{1.05}{0.92}\right)^{t}=\frac{1000}{300} \\
& t=\frac{\log \left(\frac{1000}{300}\right)}{\log (1.05 / 92)}=9.1
\end{aligned}
$$

$$
\begin{aligned}
& P(9.1)=468 \\
& \therefore \text { POI is }(9.1,468)
\end{aligned}
$$

d) Use the superposition principle to graph $S(t)=F(t)-P(t)$ on the same set of axes.

Hint: use x-values that you can see visibly on the graph.

e) What does the function $S(t)$ represent? Howe much face units are present that is extra
(Not us, D)
f) From the graph, determine the t-intercept for $S(t)$. $\quad q .1=t$

Why is this point called the crisis point?
\rightarrow After 9.1, the population of fishes is more than food remainiss Hence, fishes may not survive
g) The graph of $R(t)=\frac{F(t)}{P(t)}$ is shown at the right. What does this function represent?
how much units of food for ane fish is present
h) Describe the shape of this function.
decaying graph.

i) What are the coordinates of this function at the crisis point? Explain the meaning of this point.
$(9.1,1)$ Since after 9.1, less than one ont
present
j) Describe the living conditions of the fish population before, at and after the crisis point.
before 9.1: extra fuse units present at 9.1 just enough food units present for
after 9.1: not enough food present.
fishes mai not survive

