Day 1 - Sum or Difference of Functions

- In this unit, we will be looking at how functions can be combined.
- Some combined functions are formed by adding or subtracting two or more functions.
- The superposition principle states that the sum (or difference) of two functions can be found by:

EX 1 - Given $f(x)=(x-1)^{2}-1$ and $g(x)=\frac{1}{2}(x+1)(x-1)(x-2)$, graph the function $h(x)=g(x)-f(x)$

x	$g(x)$	$f(x)$	$h(x)=g(x)-f(x)$
-2	6	8	$-6-8=-4$
-1	0	3	$0-3=-3$
0	1	0	$1-0=1$
1	0	-1	$0-6-17=1$
2	0	0	$0-0=0$
3	4	3	$4-3=1$

State the domain and range for $h(x)$

$$
\{x \in 1 R\}
$$

EX2-Given $f(x)=2(x-3)^{2}+1$ and $g(x)=5 x-7$, write an equation for the function $h(x)=f(x)+g(x)$

$$
\begin{aligned}
& =2(x-3)^{2}+1+5 x-7 \\
& =2\left(x^{2}-6 x+9\right)+1+5 x-7 \\
& =2 x^{2}-7 x+11
\end{aligned}
$$

EX 3 - Student Council is selling T-shirts to raise money for new volleyball equipment. There is a fixed cost of $\$ 200$ for producing the T-shirts, plus a variable cost of $\$ 5$ per shirt made. Council has decided to sell the T-shirts for $\$ 8$ each $\quad R(t)=E t$
a) Write the $\operatorname{cost} C(n)$ and revenue $R(n)$ equations for n number of shirts.

$$
C(n)=\frac{(5 n+20)}{\sqrt{5 n}}
$$

$$
\begin{array}{r}
R(h)=8 n \\
m=8 \quad b=0
\end{array}
$$

b) Graph each function. Identify the point of intersection and explain its meaning.

$$
C(n)=R(n)
$$

Break even point Profit $=0$
c) Profit, $P(n)$, is the difference between revenue and cost. Write a profit equation and graph this function on the axes above. $P(n)=R(n)-(n)$

$$
\begin{aligned}
& =8 n-(5 n+200) \\
& =3 n-200
\end{aligned}
$$

d) State the domain and range for the $R(n), C(n)$ and $P(n)$ functions.

$$
\begin{aligned}
& \text { Breakeven: } \\
& 3 n-200=0 \\
& n=66.67
\end{aligned}
$$

Homework: Page 424 \#4-7, $10 \&$ next page in package.

