Day 1 – Sum or Difference of Functions

- In this unit, we will be looking at how functions can be combined.
- Some combined functions are formed by adding or subtracting two or more functions.
- The superposition principle states that the sum (or difference) of two functions can be found by:

adding/subtracting y- wordinates.

EX1 - Given $f(x) = (x-1)^2 - 1$ and $g(x) = \frac{1}{2}(x+1)(x-1)(x-2)$, graph the function h(x) = g(x) - f(x)

x	g(x)	f(x)	h(x) = g(x) - f(x)
-2	• 6	8	-6-8=-14
-1	0	3	0-3=-3
0		0	1-0-1
1	0	12000 C	0-61)= 1
2	0	Ö	0-0=0
3	4	3	4-3=1

State the domain and range for h(x)

Jac EIR 3

EX 2 - Given $f(x) = 2(x-3)^2 + 1$ and g(x) = 5x - 7, write an equation for the function h(x) = f(x) + g(x)

- $= 2(x-3)^{2} + 1 + 5x-7$
- = 2 (x²-6x+9)+1+5x-7
- $= 2x^2 7x + 12$

EX 3 - Student Council is selling T-shirts to raise money for new volleyball equipment. There is a fixed cost of \$200 for producing the T-shirts, plus a variable cost of \$5 per shirt made. Council has decided to sell the T-shirts for \$8 each $\mathbf{R} \leftarrow \mathbf{E} = \mathbf{E} \mathbf{E}$

a) Write the cost C(n) and revenue R(n) equations for n number of tshirts.

$$C(n) = (s_{n+200})$$
 fixed cost $R(h) = Bn$
 $wriddle$ $m=5$ $b=200$ $m=8$ $b=0$
 $cost$ $m=5$ $b=200$

b) Graph each function. Identify the point of intersection and explain its meaning. $C(n) = \mathcal{R}(n)$

c) Profit, P(n), is the <u>difference</u> between revenue and cost. Write a profit equation and graph this function on the axes above. P(n) = R(n) - C(n) Break even

$$3n-2ao=0$$

n= 66.67

Break even point

Profit=0

d) State the domain and range for the R(n), C(n) and P(n) functions.

		= 66
	Domain	Range
R(n)	ERGIN, nzoz	LNEN NZO Br
$\mathcal{C}(n)$	5 nEIN N7.03	PREIN 17,2003 2007 5n
<i>P</i> (<i>n</i>)	In (IN, 17,03	Ent-R, n7,-2007 200+3n

Homework: Page 424 #4-7, 10 & next page in package.