\qquad
\qquad
Unit 5 Mathematical Models - Review

1. Examine each equation and identify which type of relation (linear, quadratic, or exponential) each equation represents. Explain how you know.
a) $y=1.3(1.7)^{x}$
b) $y=2 x^{2}-x+4$
c) $y=5-2 x$

Exponential
$\operatorname{LD} x$ is in the exponent

Quadratic
LD The highest power is 2

Linear
L_{\square} no exponents
2. Determine if each table of values represents a linear, quadratic, or exponential model. Explain how you know.
$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Time } \\ \text { (days) }\end{array} & \begin{array}{c}\text { Volume } \\ (\mathrm{mL})\end{array} \\ \hline 0 & 3.15 \\ \hline 2 & 6.05 \\ \hline 4 & 8.95 \\ \hline 6 & 11.85 \\ \hline 8 & 14.75 \\ \hline 10 & 17.65 \\ \hline\end{array}\right]+2.9+2.9+2.9$

Linear
Lo First differences are constant.

Quadratic

4 Second differences are constant
3. For the linear table of values above, find the slope. Include units.

Pick 2 points from the table: $(0,3.15) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6.05-3.15}{2-0}=\frac{2.9}{2}=1.4 \frac{5 \mathrm{~mL}}{\text { day }}$
4. Simplify each expression (expression each as a power with positive exponents).

$$
\text { a) } \begin{aligned}
& \frac{\left(3^{-2}\right)\left(3^{3}\right)}{3^{-1}} \\
= & \frac{3^{1}}{3^{-1}} \\
= & 3^{2}
\end{aligned}
$$

b) $\frac{(-3)^{4} \times(-3)^{5}}{\left[(-3)^{3}\right]^{4}}$

$$
\begin{aligned}
& =\frac{(-3)^{4}}{(-3)^{12}} \\
& =(-3)^{-3} \\
& =\frac{1}{(-3)^{3}}
\end{aligned}
$$

5. Write as a root, then evaluate [4 marks]

$$
\text { a) } \begin{aligned}
125^{\frac{2}{3}} & =\sqrt[3]{125^{2}} \\
& =5^{2} \\
& =25
\end{aligned}
$$

c) $\frac{p^{-4} q^{3}}{p^{2} q^{-2}}$
d) $\left(u^{2} v^{0} w^{-1}\right)^{-2}$

$$
\begin{aligned}
& =p^{p^{2} q^{-2} q^{3-2}}=u^{-4} v^{0} \omega^{2} \\
& =p^{-6} q^{5}=u^{-4} \omega^{2} \\
& =\frac{\omega^{5}}{u^{4}}
\end{aligned}
$$

\qquad Date: \qquad
6. Solve for x.
a) $\left.10^{-3 x+1}=10^{2 x-0}\right) 10^{-3 x+1}=10^{2 x-4}$
b) $3^{3 x+1}=9^{x-2}$
c) $4^{x-3}=8^{x+1}$

$$
-3 x-2 x=-4-1
$$

$$
\begin{gathered}
3^{3 x+1}=\left(3^{2}\right)^{x-2} \\
3^{3 x+1}=3^{2 x-4} \\
3 x+1=2 x-4 \\
3 x-2 x=-4-1 \\
x=-5
\end{gathered}
$$

$$
\left(2^{2}\right)^{x-3}=\left(2^{3}\right)^{x+1}
$$

c) $4^{x-3}=8^{x+1} \quad x=\frac{-5}{-5}$

$$
2^{2 x-6}=2^{3 x+3}
$$

$2 x-6=3 x+3$
e) ${ }^{3^{2 x+3}}=\frac{1}{9}$ d) $27^{2}=3^{2 x+1}$
d) $27^{2}=3^{2 x+1}$

$$
x=1
$$

$$
2 x-3 x=3+6
$$

$$
-x=9
$$

e) $3^{2 x+3}=\frac{1}{9}$

$$
\begin{aligned}
& \left(3^{3}\right)^{2}=3^{2 x+1} \\
& 3^{6}=3^{2 x+1}
\end{aligned}
$$

$$
6=2 x+1
$$

$$
\begin{aligned}
3^{2 x+3} & =3^{-2} \\
2 x+3 & =-2 \\
2 x & =-2-3 \\
2 x & =-5 \\
x & =\frac{-5}{2}
\end{aligned}
$$

$$
\begin{aligned}
6-1 & =2 x \\
5 & =2 x \\
\frac{5}{2} & =x
\end{aligned}
$$

7. The formula $A=P(1+i)^{n}$ can be used to model the growth of money when interest is compounded monthly. Solve for i.

$$
\begin{aligned}
& A=p(1+i)^{n} \\
& \frac{A}{P}=(1+i)^{n} \\
& \sqrt[n]{\frac{A}{p}}=1+i \\
& \sqrt[n]{\frac{A}{P}}-1=i
\end{aligned}
$$

8. The volume of a sphere is given by the formula $V=\frac{4}{3} \pi r^{3}$. Solve for r.

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& 3 V=4 \pi r^{3} \\
& \frac{3 V}{4 \pi}=r^{3} \\
& \sqrt[3]{\frac{3 V}{4 \pi}}=r
\end{aligned}
$$

9. The formula $E=m c^{2}$ related the mass of an object (m), the speed of light (c) and energy (E).

- Solve form. $\quad E=m c^{2}$
- Solve for c .

$$
\begin{array}{l|l}
E=m c^{2} & E=m c^{2} \\
\frac{E}{c^{2}}=m & \frac{E}{m}=c^{2} \\
\sqrt{\frac{E}{m}}=c
\end{array}
$$

\qquad Date: \qquad
10. Solve for x to two decimal places using a table of values to guess and check

$$
4^{x}=300
$$

x	4^{x}
2	16
3	64
4	256
5	1024
4.5	512
4.2	337.79
4.1	294.07
4.15	315.17
4.17	302.33
4.11	298.73
inahighinterest saving	

$$
\therefore x=4.11
$$

11. Cynthia deposits money in a high interest savings account. The value of the account, V dollars, after t years is given by the equation:

$$
V=2000(1.04)^{t}
$$

a) What does 2000 represent?
b) What does 1.04 represent?
c) How much money is the account after 13 years?
d) Cynthia will buy a used car when she has saved $\$ 5000$. After how many years will Cynthia buy her car?
a) 2000 represents the amount of money deposited at the beginning (The initial value $=\$ 2000$)
b) 1.04 is the growth rate $(0.04=4 \%$ more money each year)
c) $V=2000(1.04)^{13}$
d)

$$
=2000(1.66507)
$$

$$
=53330.15
$$

$$
\begin{aligned}
& 5000=2000(1.04)^{t} \\
& \begin{array}{cc|l}
\frac{5000}{}=1.04^{t} & t & 1.04 t \\
\hline 2000 \\
2.5=1.04 t & 2 & 1.0816 \\
& 5 & 1.21665 \\
\text { Cynthia must } & 10 & 1.48 \\
\text { wait } 23 \text { years } & 20 & 2.19 \\
\text { to buy her car. } & 22 & 2.6658 \\
& & 23 \\
& & 2.3699 \\
\hline
\end{array}
\end{aligned}
$$

\qquad Date:
12. Tritium, a radioactive gas that builds up in CANDU nuclear reactors, is collected, stored in pressurized gas cylinders, and sold to research laboratories. Tritium decays into helium over time. Its half-life is about 12.3 years.
a) Write an equation that gives the mass of tritium remaining in a cylinder that originally contained 500 g of tritium.
b) Estimate the time it takes until less than 5 g of tritium is present.
a) Radioactive decay: $A=A_{0}(0.5)^{t / h}$

$$
A=500(0.5)^{t / 12.3}
$$

b) $\quad A=5$

$$
\begin{aligned}
5 & =500(0.5)^{t / 12.3} \\
\frac{5}{500} & =(0.5)^{t / 12.3} \\
0.01 & =6.5)^{t / 12.3}
\end{aligned}
$$

\therefore :H will take approximately 83 years

t	$0.5^{t / 12.3}$
5	0.7579
50	0.0625
60	0.0359
70	0.0206
80	0.0118
85	0.0897
82	0.0159
83	0.0100268
84	0.00948

13. A colony of bacteria doubles in size every 20 min. How long will it take for a colony of 20 bacteria to grow

$$
\begin{aligned}
& A=A_{0} 2^{t / d} \\
& A=20(2)^{t / 20} \\
& 1000=20(2)^{t / 20} \\
& \frac{10000}{20}=2^{t / 20} \\
& 500=2^{t / 20}
\end{aligned}
$$

Don't forget: $\quad A=A_{0}(2)^{\frac{t}{d}}$

$$
A=A_{0}(0.5)^{\frac{t}{h}}
$$

