Day 8: 5.5 Instantaneous Rates of Change

EX 1 - The height, *h*, in metres, of a car above the ground as a Ferris wheel turns can be modelled by the function $h(t) = 18 \sin \frac{\pi}{90} t + 20$, where *t* is the time, in seconds.

a) Determine the average rate of change of h in the following time intervals, rounded to five decimal places.

Interval	Δt	$\Delta h(t)$	Average rate of change of <i>h(t)</i> (m/s)
7 s to 8 s	l	= h(8) - h(7) = $[i8sin8\pi + 20] - [i8sin2\pi + 20]$	= 0.6088 m/s
		= 0.60688	
7.9 s to 8 s	0.1	$= \left[\frac{185in 81}{90} + 20 \right] - \left[\frac{185in 72917}{90} + 20 \right]$	0.06043 = 0.6042
		= 0.06043	0.1 m/s
7.99 s to 8 s	0.01	=[18 Sin 817 +20]- [18 Sin 7.4917 +20]	0.6040 m/s
		= 0.00664	

b) Estimate a value for the instantaneous rate of change of h at t = 8 s.

IROC= 0.60 m/s

c) What physical quantity does this instantaneous rate of change represent in this case?
At time 8 seconds, the height increasing by 0.60 m/s.
(The Ferris wheel is going cap)
d) Would you expect the instantaneous rate of change for h(t) be the same at t = 13 s? Explain.

:23

d) Would you expect the instantaneous rate of change for n(t) be the same at t = 100. $h(f) = 18 \sin \frac{\pi t}{90} + 20$ [Period = $2\pi = \frac{2\pi}{\pi} = \frac{2\pi}{90}$] $20 \int \frac{135}{4590} = 13 \text{ frme} = 13 \text{ seconds},$ $135 \int \frac{135}{4590} = 18 \text{ frme} = 13 \text{ seconds},$ $136 \int \frac{135}{4590} = 18 \text{ frme} = 13 \text{ seconds},$ $136 \int \frac{135}{4590} = 18 \text{ free} + 18 \text{ froe} + 18 \text{ seconds},$ $136 \int \frac{135}{4590} = 18 \text{ free} + 18 \text{ froe} + 18 \text{ seconds},$ $136 \int \frac{135}{4590} = 18 \text{ froe} + 18 \text{ seconds},$ $136 \int \frac{135}{4590} = 18 \text{ froe} + 18 \text{ seconds},$ $138 \int \frac{138}{130} = 18 \text{ seconds},$ $138 \int \frac{138}{130} = 18 \text{ seconds},$ **EX 2** - The water depth near a harbour varies throughout the day. A camper observes that the water depth is 10 m at high tide and 4 m at low tide and that one tide cycle occurs approximately every 12 hours.

a) Graph the water depth, d(t) in metres, versus time, t in hours, for the **next 48 hours**. Assume that you start measuring at low tide which occurs at midnight.

c) Based on your equation, what is the water depth at 10 am?

$$d(10) = -3 \cos \frac{10\pi}{6} + 7$$

= 5.5 m

d) Complete the table below to find the instantaneous rate of change of the water depth relative to time for t = 3.

Intervals	Δt	Δd	Δd/Δt	
$3 \le t \le 3.1$		d(3.1) - d(3)	0.1570	
	0.1	= 0.1570	0.1 31.57	po m/s
$3 \le t \le 3.01$	0.01	d(3.61) - d(3)	15708 m/s	
		=0.015708	1 103	
$3 \le t \le 3.001$	0.001	d(3.001)-d(3)	15708 MIS	
		= 0.0015708		
The instantone	oug voto of shan	matt-2 in lab man	to 1 desimal)	

:. The instantaneous rate of change at t = 3 is $1 \cdot 6$ (round to 1 decimal) m/S

GUYATT MHF4U Unit 5: Page 24

c) Calculate the rider's height above the ground after **10 seconds**.

		IN)		6	20
1	ιc	(v)	Station	\mathcal{I}	nu

d) Write a <u>new cosine equation</u> for the graph if the Ferris wheel completes one revolution every <u>30 seconds</u>.

$$h(t) = -6 \cos\left(\frac{\pi}{15}t\right) + 8$$

e) State the time(s) when the instantaneous rate of change is a maximum, and estimate this rate of change: t = 15, 75, 135 seconds. $1ROC = \frac{h(15.01) - h(15)}{0.01} = 0.63 \text{ m/s}$ f) State the time(s) when the instantaneous rate of change is a minimum, and estimate this rate of change:

g) State the time(s) when the instantaneous rate of change is zero.

At local max/min:
$$t = 0, 30, 60, 90, 120, 150, 180$$

 $IROC = 0 = 7$ tangent is horizontal.

GUYATT MHF4U Unit 5: Page 25