Day 8: 5.5 Instantaneous Rates of Change
EX 1 - The height, h, in metres, of a car above the ground as a Ferris wheel turns can be modelled by the function $h(t)=18 \sin \frac{\pi}{90} t+20$, where t is the time, in seconds.
a) Determine the average rate of change of h in the following time intervals, rounded to five decimal places.

b) Estimate a value for the instantaneous rate of change of h at $t=8 \mathrm{~s}$.

$$
I R O C=0.60 \mathrm{~m} / \mathrm{s}
$$

c) What physical quantity does this instantaneous rate of change represent in this case?

At time 8 seconds, the height increasing by $0.60 \mathrm{~m} / \mathrm{s}$. (The terns whee is going up)
d) Would you expect the instantaneous rate of change for $\mathrm{h}(\mathrm{t})$ be the same at $t=13 \mathrm{~s}$? Explain.

$$
\begin{aligned}
& h(t)=18 \sin \frac{\pi t}{90}+20 \text { [Period }= \\
& \text { At time }=13 \text { seconds, } \\
& \text { the proc would be } \\
& \frac{2 \pi}{k}=\frac{2 \pi}{\frac{\pi}{90}}=180 \mathrm{~J} \\
& \text { lower (different) }
\end{aligned}
$$

EX 2 - The water depth near a harbour varies throughout the day. A camper observes that the water depth is 10 m at high tide and 4 m at low tide and that one tide cycle occurs approximately every 12 hours.
a) Graph the water depth, $\mathrm{d}(\mathrm{t})$ in metres, versus time, t in hours, for the next 48 hours. Assume that you start measuring at low tide which occurs at midnight.

$$
a=3 \quad p=12 \quad k=\frac{2 \pi}{12}=\frac{\pi}{6}
$$

b) Write a cosine equation to represent the function. $d(t)=-3 \cos \frac{\pi}{6} t+7$
c) Based on your equation, what is the water depth at 10 am ?

$$
\begin{aligned}
d(10) & =-3 \cos \frac{10 \pi}{6}+7 \\
& =5.5 \mathrm{~m}
\end{aligned}
$$

d) Complete the table below to find the instantaneous rate of change of the water depth relative to time for $\mathrm{t}=$ 3.

\therefore The instantaneous rate of change at $\mathrm{t}=3$ is 1. 6 (round to 1 decimal)
m / s

Homework Questions:

1. A carnival Ferris wheel with a radius of 6 m makes one complete revolution every 60 seconds. The bottom of the wheel is 2 m above the ground. $a=6 \quad p=60 \quad k=\frac{2 \pi}{60}=\frac{\pi}{30} \quad \min =2$ $\max =14$
a) Graph a rider's height above the ground, $h(t)$ in metres, as a function of time, t in seconds, for three revolutions. Assume that the riders boards at the bottom of the Ferris wheel. Label the axes.
\max
$a .0 c$
min

b) Write a cosine equation for the graph. $\$$)

$$
h(t)=-6 \cos \left(\frac{\pi}{30} t\right)+8
$$

c) Calculate the rider's height above the ground after 10 seconds.

$$
h(10)=5 m
$$

d) Write a new cosine equation for the graph if the Ferris wheel completes one revolution every $\underline{30}$ seconds.

$$
h(t)=-6 \cos \left(\frac{\pi}{15} t\right)+8
$$

e) State the time (s) when the instantaneous rate of change is a maximum, and estimate this rate of change: $t=15,75,135$ seconds. $\quad 1 R O C=\frac{h(15.01)-h(15)}{0.01}=0.63 \mathrm{~m} / \mathrm{s}$
f) State the time (s) when the instantaneous rate of change is a minimum, and estimate this rate of change:
$t=45,105,165$ seconds. $1 R 0 C=-0.63 \mathrm{~m} / \mathrm{s}$
g) State the time (s) when the instantaneous rate of change is zero.

At local max/min: $t=0,30,60,90,120,150,180$
$1 R O C=0 \Rightarrow$ tangent is honzontal.

