Day 1: Prerequisite Skills

Periodic Functions

- A function is periodic if it has a pattern of y-values that repeat at regular intervals.
- A cycle is one complete pattern.
- The period of function is the horizontal length of one cycle.
- The amplitude of a periodic function is one half the difference between the max value and the min value. The amplitude is always positive.

Formulas and concepts:
Given $y=\operatorname{acos}[k(x-d)]+c$:
$M a x=c+|a|$

$$
\text { Min }=c-|a|
$$

Amplitude= $=\frac{1 a 1 \rightarrow \frac{\max -\min }{2}}{2}$

Period $=$
 $(x, y)->\left(\frac{x}{k}+d \quad, a y+c\right.$)
*Amplitude is aluareys positive.

Example 1: Sketch the graph of a sinusoidal function that has a period of 180, an amplitude of 3 , and whose equation of the axis is $y=-1$.

Example 2: Sketch 2 cycles of the graph of a sinusoidal function that has a period of 90 , an amplitude of 2 , and whose equation of the axis is $\mathrm{y}=1$.

Example 3: For the function $g(x)=-3 \cos (x-60)+1$:

Period	Amplitude	Phase Shift \quad Domain of 1 Cycle	Range
360°	3	$60^{\circ} \text { to the righe }\left\{\begin{array}{l} \{x \in \mathbb{R} \mid 0 \leq x \leq 360\} \\ o R \quad\{x \in \mathbb{R} \mid 60 \leq x \leq 420\} \end{array}\right\}$	$\{y \in \mathbb{R} \mid-2 \leq y \leq 4\}$

