Day 1: 4.1 Increasing and Decreasing Functions

INVESTIGATION:

The graph of the function $y=\frac{x^{3}+4 x^{2}-5 x-10}{x^{2}+2 x-15}=\frac{x^{3}+4 x-5 x-10}{(x+5)(x-3)}$

Discussion: IMPORTANT INFORMATION

Domain: $\{x \in \mathbb{R} \mid x \neq-5,3\}$

Asymptotes): $\begin{aligned} & \text { VA: } x=-5,3 \\ & \text { HA: None }\end{aligned}$
HA: None
Oblique: $\quad y=x+2$
Special Points
\Rightarrow Intercepts x-int: $-4.5,1.9,-0.9$

$$
y \operatorname{tat}: \frac{-10}{15}=\frac{2}{3}
$$

$>$ Local (Relative) Maxima/Minima

$(-0.9,0)$
Increase: $x \in(-\infty,-6) \cup(-4,1.2) \cup(5, \infty)$

Decrease:

$$
\begin{gathered}
\text { Decrease: } \\
x \in(-6,-5) \cup(-5,-4) \cup(12,3) \\
\cup(3,5)
\end{gathered}
$$

INTERVAL NOTATIONS

Remember this table?

EVEN OR ODD FUNCTION?

$f(x)=f(-x)$
Then $f(x)$ is
an even function

$$
f(x)=-f(-x)
$$

OR

$$
-f(x)=f(-x)
$$

INCREASING AND DECREASING FUNCTION

In general, a function f is called increasing on an interval 1 if

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \quad \text { whenever } x_{1}<x_{2} \text { in I }
$$

It is called decreasing on I if

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \quad \text { whenever } x_{1}<x_{2} \text { in I }
$$

Which interval the above function is increasing? Which interval it is decreasing?

$$
\begin{aligned}
& \text { inc: } \quad x \in(3,6) \\
& \text { dec: } x \in(1,3) \cup(6,8)
\end{aligned}
$$

State the interval that $\mathrm{y}=\mathrm{x}^{2}$ is increasing; the interval it is decreasing. $\quad x \in(-\infty, 0)$

What do you notice about the tangent line in each interval?
Tangents have a negative slope if the $f(x)$ is decreasing.

$$
\begin{aligned}
& x \in(-\infty, 0) \quad f(x) \text { is decReasing } \\
& x \in(0, \infty) \quad f(x) \text { is increasing NOTE: } @ x=0 \\
& \text { the function is nether } \\
& \text { inc } / \text { dec. }
\end{aligned}
$$

Test for Increasing \& Decreasing Intervals

1. If $f^{\prime}(x)>0$ for all x in an interval I, then $f(x)$ is increasing on I
2. If $f^{\prime}(x)<0$ for all x in 1 , then $f(x)$ is decreasing on I

Example 1:
Find the intervals on
which the function $f(x)=1-5 x+4 x^{2}$ is increasing and decreasing $\operatorname{set} f=0$
$8 x-5=0$

$$
x=\frac{5}{8}<\frac{1}{\frac{5}{8}}>
$$

x	$(-\infty, 5 / 8)$	$(5 / 8, \infty)$
$f^{\prime}(x)$	-	+
$f(x)$	decreasing	locreasig.

Example 2 Where is the function $y=x^{3}+6 x^{2}+9 x+2$ increasing?

$$
y^{\prime}=\infty \Rightarrow 3 x^{2}+12 x+9=0
$$

$$
3\left(x^{2}+4 x+3\right)=0
$$

$$
3(x+3)(x+1)=0
$$

x	$(-\infty,-3)$	$(-3,-1)$	$(-1,0 \infty)$
$3(x+3)$	-	+	+
$(x+1)$	-	-	+
$f^{2}(x)$	+	-	+
$f(x)$	increasing	decleasiy	increasing
$(-3,2)$	$(-1,-2)$		

localmax localmin $d t x=\sum_{8}$

3 internals.
Example 3 Find the intervals of increase and decrease for the function $g(x)=x^{4}-4 x^{3}-8 x^{2}-1$

$$
\begin{aligned}
& 4 x^{3}-12 x^{2}-16 x=0 \\
& 4 x\left(x^{2}-3 x-4\right)=0 \\
& 4 x(x-4)(x+1)=0
\end{aligned}
$$

x	$(-\infty,-1)$	$(-1,0)$	$(0,4)$	$(4, \infty)$
$(4 x)$	-	-	+	+
$(x-4)$	-	-	-	+
$c x+1)$	-	t	t	+
$f(x)$	-	+	-	+
$f(x)$	dec	lnc	$d e c$	$i n c$

$$
\begin{aligned}
& \therefore f(x) \text { is dec if } x \in(-\infty,-1) \cup(0,4) \\
& f(x) \text { is inc if } x \in(-1,0) \cup(4, \infty) \\
& (-1,-12) \text { (4,-12 }) \text { LOAD MA AM } \\
& (0,-1) \text { LOCAL MAX }
\end{aligned}
$$

