Day 6: 3.4 Optimization in Science \& Economy

Cost/Revenue/Profit Problem
$>$ Let x is quantity of products sale/produced

- Cost as a function of quantity of products $C(x)$
$>$ Revenue as a function of quantity of products $R(x)$
$>$ Profit as a function of quantity of products $P(x)=R(x)-C(x)$
- Average cost $($ unit $\cos t)=\frac{C(x)}{x}$

Objective: Minimize the cost or maximize the Profit or the Revenue.
Example 1: For an outdoor concert, a ticket of $\$ 30$ normally attracts 5000 people. For each $\$ 1$ increase in the ticket price, 100 fewer people will attend. What ticket price will maximize the revenue?

Let x represent number of price increases.

$$
\begin{gathered}
R(x)=(30+x)(5000-100 x) \\
R^{\prime}(x)=0 \Rightarrow 1(5000-100 x)+(300 x)(-100)=0 \\
5000-100 x-3000-100 x=0 \\
2000-200 x=0 \\
x=2
\end{gathered}
$$

$$
\therefore P(x)=30+x
$$

\therefore Ticket price of \$32

$$
P(2)=30+2
$$ would maximize the

$$
=\$ 32
$$ revenue.

NOTE: This concept was covered in gr 10 and 11. We can complete the square to find the \max / min.

Example 2: A lighthouse, L , is located on a small island 4 km East of point A on a straight North-South coastline. A power cable is to be laid from to L to the nearest power station at point B on the shoreline 12 km North of A. The cost of laying cable under the water is $\$ 6000 / \mathrm{km}$ and the cost of laying cable along the shoreline is $\$ 2000 / \mathrm{km}$. Find the location of point C between A and B on the shoreline where the power cable should enter the water to minimize the cost?

$$
\begin{aligned}
& c^{2}=4+x^{2} \\
& c=\sqrt{16+x^{2}} \\
& 0 \leqslant x \leqslant 12
\end{aligned}
$$

$$
\begin{aligned}
& c(x)=6000 \sqrt{16+x^{2}}+2000(12-x) \\
& e^{\prime}(x)=6000\left(\frac{1}{2 \sqrt{16+x^{2}}}\right)(2 x)-2000 \\
& c^{\prime}(x)=0 \Rightarrow 2000=\frac{6000 x}{\sqrt{16+x^{2}}}
\end{aligned}
$$

$$
2000 \sqrt{16+x^{2}}=6000 x
$$

$$
\sqrt{16+x^{2}}=3 x
$$

$$
16+x^{2}=9 x^{2}
$$

$$
8 x^{2}=16
$$

$$
x^{2}=2
$$

$$
x=\sqrt{2} \approx 1.41 \mathrm{~km}
$$

\therefore The point C should be 1.41 km North of point A.

