Day 2: Polynomial Models Involving Velocity and Speed

In many situations, an object's position, s, can be represented as $s(t)$. Recall that Average velocity is defined as the rate of change of displacement over an interval of time. Instantaneous velocity is the rate of change of displacement at a specific point in time.
On a displacement-time graph, the slope of a secant represents average velocity, while the slope of a tangent represents instantaneous velocity.

The rate of change of $s(t)$ with respect to time is the object's velocity, $v(t)$, and the rate of change of the velocity with respect to time is its acceleration, $a(t)$. The absolute value/ magnitude of the velocity is called speed.

$$
\begin{array}{ll}
s(t) & \text { distance function } \\
s^{\prime}(t)=v(t) & \text { velocity function } \\
s^{\prime \prime}(t)=v^{\prime}(t)=a(t) & \text { acceleration function }
\end{array}
$$

In Leibniz notation: $\quad v=\frac{d s}{d y} \quad$ and $\quad a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$
$s(t), v(t), a(t)$ could be positive or negative depends on the direction of the object
The speed is $|v(t)|$, always positive, regardless of the direction

Key Concepts:

- Positive velocity means object is moving in positive direction
- Negative velocity means object is moving in negative direction.
- Object is at rest means object is not moving which implies velocity =0
- Negative acceleration means velocity is \qquad
- Positive acceleration means velocity is increasing
- Zero acceleration means $a(t)=0$ which means velocity is constant which means object is neither accelerating or decelerating.
- An object is accelerating (speeding up) when its velocity and acceleration have the same signs.
- An object is decelerating (slowing down) when its velocity and acceleration have opposite signs.

Example 1: The position function of a moving object is $s(t)=t^{3}-15 t^{2}+63 t \quad t \geq 0$ where s is in metres, t is in seconds.
a) Find the velocity $v(t)$ and acceleration function $a(t)$.

$$
\begin{aligned}
& v(t)=s^{\prime}(t)=3 t^{2}-30 t+63, \quad t \geqslant 0 \\
& a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=6 t-30, t \geqslant 0
\end{aligned}
$$

b) Find the average velocity during the time interval of [1,3].

$$
\begin{array}{rlrl}
\text { AROC }=\frac{5(3)-5 C 1}{3-1} & s(3)=81 \\
& =\frac{81-49}{2} & \\
& =16(1)=49
\end{array}
$$

c) Find the time instant at which the object is at rest. $\Rightarrow v e t)=0$

$$
\begin{aligned}
& 3 t^{2}-30 t+63=0 \\
& 3\left(t^{2}-10 t+21\right)=0 \\
& 3(t-3)(t-7)=0 \Rightarrow t=3 \text { and } t=7 \sec
\end{aligned}
$$

d) When is the particle moving in a positive direction. $v(t)>0$

Time (s)	$t=0$	$t=1$	$t=2$	$t=3$	$t=4$	$t=5$	$t=6$	$t=7$	$t=8$
$s(t)$	0	49	74	81	76	65	54	49	56
$v(t)$	63	36	15	0	-9	-12	-9	0	15
$a(t)$	-30	-24	-18	-12	-6	0	6	12	18

e) Fill the following table
f) Draw a diagram to show the movement of the object during the first 10 s ?

