Day 1: 3.1 High-Order Derivatives

HIGH ORDER DERIVATIVES:

If the function $y=f(x)$ is differentiable then $y^{\prime}=f^{\prime}(x)$ is the first derivative of $y=f(x)$ w.r.t. x . If $\mathrm{y}^{\prime}=f^{\prime}(\mathrm{x})$ is also differentiable then $y^{\prime \prime}=f^{\prime \prime}(x)$ is the second derivative of $y=f(x)$ w.r.t. x

Notations:

$$
\begin{gathered}
y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d^{2}}{d x^{2}} f(x) \\
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d^{3} y}{d x^{3}}=\frac{d^{3}}{d x^{3}} f(x) \\
y^{(4)}=f^{(4)}(x)=\frac{d^{4} y}{d x^{4}}=\frac{d^{4}}{d x^{4}} f(x) \\
y^{(n)}=f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d^{n}}{d x^{n}} f(x)
\end{gathered}
$$

Warm-up: Find the derivative of $f(x)=x^{4}+5 x^{3}-6 x+7$. Then find the derivative of the derivative. Repeat until you are left with a constant.

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}+15 x^{2}-6 \\
& f^{\prime \prime}(x)=12 x^{2}+30 x \\
& f^{\prime \prime \prime}(x)=24 x+30 \\
& f^{4}(x)=24
\end{aligned}
$$

Note: degree of $f(x)$ is 4. $f^{4}(x)$ is constant.

Example 1:

