Day 1: 3.1 High-Order Derivatives

HIGH ORDER DERIVATIVES:

If the function y = f(x) is differentiable then y' = f'(x) is the <u>first</u> derivative of y = f(x) w.r.t. x. If y' = f'(x) is also differentiable then y'' = f''(x) is the <u>second derivative</u> of y = f(x) w.r.t. x

Notations:

$$y'' = f''(x) = \frac{d^2 y}{dx^2} = \frac{d^2}{dx^2} f(x)$$
$$y''' = f'''(x) = \frac{d^3 y}{dx^3} = \frac{d^3}{dx^3} f(x)$$
$$y^{(4)} = f^{(4)}(x) = \frac{d^4 y}{dx^4} = \frac{d^4}{dx^4} f(x)$$
$$y^{(n)} = f^{(n)}(x) = \frac{d^n y}{dx^n} = \frac{d^n}{dx^n} f(x)$$

Warm-up: Find the derivative of $f(x) = x^4 + 5x^3 - 6x + 7$. Then find the derivative of the derivative. Repeat until you are left with a constant.

$$f'(x) = 4x^{3} + 15x^{2} - 6$$

$$f''(x) = 12x^{2} + 30x$$

$$f''(x) = 24x + 30$$

$$f''(x) = 24$$

Note: degree of f(x) is 4. f''(x) is constant. Example 1:

Function, $f(x)$	First Derivative, $f'(x)$	Second Derivative, $f''(x)$
a) $f(x) = 3x^2 + 7x - 5$	f'(x) = 6x + 7	f''(x) = 6
b) $f(x) = (2x+3)^2$	$f'(x) = 2(2x+3)^{(2)}$ = 4(2x+3)=8x+12	f"(x)= 8
c) $f(x) = 3x^4 - 5x^3 + 4x^2 - 8x + 3$	P(x)=12x-15x2+8x-8	f''(x) = 36x - 30x + 8
d) $f(x) = \frac{x+3}{x-5}$, $x \neq 5$		$f'(x) = -\vartheta (x-5)^{-2}$ $f''(x) = 16(x-5)^{-3}$
	$(x-5)^{2}$ $= \frac{-8}{(x-5)^{2}}$	$= \frac{16}{(x-5)^3}$
e) $f(x) = \frac{x}{x^2 - 16}$, $\chi \neq \pm \pm 4$	$f'(x) = \frac{I(x^{2}-16) - (x)(2x)}{(x^{2}-16)^{2}} f''' = -2$	$\frac{1}{(\chi^2-16)^2} - (-\chi^2-16)(2)(\chi^2-16)(2\chi)}{(\chi^2-16)^4}$
	$F(x) = \frac{(x^{2}-16)^{2}}{(x^{2}-16)^{2}} = \frac{x^{2}-16-2x^{2}}{(x^{2}-16)^{2}} = -2x(x^{2}-16)^{2}$ $= -\frac{x^{2}-16}{(x^{2}-16)^{2}} = -\frac{1}{2}$	$\frac{(x^{2}-16) \left[x^{2}-16 - 2x^{2}-32 \right]}{(x^{2}-16)^{4}}$
	$= - \chi^{2} - 16$	$(x^2 - 16)^4$
	$\left \begin{array}{c} (\chi - (b)) \\ = \end{array} \right = -$	$(\chi^2 - 16)^3$
		$\frac{2 \times (\chi^{2} + 48)}{(\chi^{2} - 16)^{3}}$