1. Graph $y=5^{x}$ and $y=(1 / 5)^{x}$ on the same grid.

2. For the curve $y=2\left(5^{x}\right)-6$, determine
a) the transformations of $y=5^{x}$

- Vertically stretzhed by a factor of 2
- Vertical translation 6 units down.
b) the horizontal asymptote \qquad
c) the y-intercept $y=-6$ $[$ [sub $x=0]$.
d) whether the curve is increasing or
decreasing increasing.
e) the domain: $\{x \in \mathbb{R}\}$
range: $\{y \in \mathbb{R} \mid y>-6\}$
f) sketch the graph

3. Repeat the above for the curve $y=+5\left(\frac{1}{2}\right)^{x}+3$.

$$
H_{A}: \quad y=3
$$

$$
D=\{x \in \mathbb{R}\}
$$

$$
R=\{y \in \mathbb{R} \mid Y>3\}
$$

decreasing.

$$
y-i n t: 8
$$

vertically stretched by a

$$
(-1,2) \rightarrow(-1,13)
$$

$$
(-1,1) \rightarrow(0,8)
$$

$$
\left(1, \frac{1}{2}\right) \rightarrow(1,5.5)
$$

4. List 2 equivalent powers for each exponential function below.
a) $y=25^{x}$
b) $y=\left(\frac{1}{8}\right)^{x}$

$$
\therefore y=\left(\frac{1}{2}\right)^{3 x} \text { or }
$$

$$
\begin{aligned}
& \frac{1}{8}=\frac{1}{2^{3}} \\
& \text { OR } \quad \frac{1}{8}=2^{-3}
\end{aligned}
$$

$$
\therefore y=5^{2 x} \quad \therefore y=\left(\frac{1}{25}\right)^{-x}
$$

5. The exponential function $y=\left(\frac{1}{7}\right)^{x}$ is vertically stretched by a factor of 2 , horizontally compressed to $\frac{1}{4}$, translated right 3 units and translated up 5 units. State the transformed equation for this exponential function.

$$
y=2\left(\frac{1}{7}\right)^{4(x-3)}+5
$$

6. Following are the graphs of some exponential functions with equations of the form $y=b^{x}, b>0$. Using what you have learned about exponential functions and without the aid of your calculator, write the equation of each function.
a)

$$
y=6^{x}-3 .
$$

$$
H A: y=-3 \quad \therefore c=-3
$$

$$
y=a b^{x}-3
$$

Sub $x=0, y=-2$;
$-2=a-3$
$a=1$
Sub $(1,3) b=6$

$$
4=6^{x}-3
$$

b)

$$
y=-(3)^{x+2}+4 \quad \text { or } \quad y=-9(3)^{x}+4
$$

HA: $y=4 \quad \therefore c=4$ reflected.

$$
\therefore y=-a(b)^{x}+4
$$

$$
\begin{aligned}
\operatorname{sub}(0,-5) \Rightarrow & -5=-a+4 \\
& a=9
\end{aligned}
$$

$$
\operatorname{sub}(-1,1) \Rightarrow y=-9(b)^{x}+4
$$

$$
\begin{aligned}
& 1=-9\left(b^{-1}\right)+4 \\
& h-2 \therefore 4=-9(3)^{x}+4
\end{aligned}
$$

7. A rare coin was bought for $\$ 1200$. Its value increases by 5% each year. Determine the coin's value ten years after it was bought.

$$
\begin{aligned}
y & =1200(1-0.05)^{n} \\
& =1200(0.95)^{n}
\end{aligned}
$$

After 10 years: $y=1200(0.95)^{10}=1954.67 \sim 1954.65$
8. A small country in Africa must maintain at least 5020 acres of forest at all times. If the government wishes to cut down 11% of the forest every year for the next 4 years, how many acres of forest must the country start with to ensure they abide by the law?

$$
\begin{aligned}
y & =a(1-0.11)^{n} \\
5020 & =a(0.89)^{4} \\
a & =\frac{5020}{0.99^{4}}=8001 \text { aches }
\end{aligned}
$$

9. Thorium- 227 has a half-life of 18.4 days. How much time will a 50 -mg sample take to decompose to 10 mg ? (use "guest and check"). $\quad A=50\left(\frac{1}{2}\right)^{\frac{t}{18.4}}$

$$
10=50\left(\frac{1}{2}\right)^{\frac{t}{18.4}} \text { guess andchedk } t=42.7 .
$$

10. Solve the equation $2^{2 x}-5\left(2^{x}\right)+4=0$

$$
\begin{array}{lrl}
p^{2}-5 p+4=0 & {\left[p=2^{x}\right]} \\
(p-4)(p-1)=0 & \therefore 2^{x}=4 & \text { or }
\end{array} \quad 2^{x}=1
$$

Solutions:

2. VS by 2, down 6; $y=-6,(0,-4)$, increasing, $D:\{x \in \mathbb{R}\}, R:\{y \in \mathbb{R} \mid y>-6\}$

3. VS by 5 , up $3 ; y=3$, $(0,8)$, decreasing,

$$
D:\{x \in D\}, R:\{y \in D \mid y>3\}
$$

4.a) $y=5^{2 x}, y=(1 / 25)^{-x}$, etc.
b) $y=\left(\frac{1}{2}\right)^{3 x}, 8^{-x}$, etc.
5. $2(1 / 7)^{4(x-3)}+5$
$\begin{array}{ll}6 \text {. a) } 6^{x}-3 & \text { b) }-3^{x+2}+4\end{array}$
7. $\$ 1954.67$
8. 8001 acres
9. 42.7 days

1. Solve the following exponential equations. Show all steps.

2. A standard can of Red Bull contains about 80 mg of caffeine. Every 5 hours, the mass of caffeine in an adult's bloodstream reduces by half. While studying for a test, Roger drank a can of Red Bull at 11:00 PM last night. Determine the mass of caffeine in Adam's bloodstream at 2 PM today.

$$
\begin{aligned}
A=80\left(\frac{1}{2}\right)^{\frac{t}{5}} & t=15 \\
=80\left(\frac{1}{2}\right)^{\frac{15}{5}} & =80\left(\frac{1}{2}\right)^{3} \\
& =80\left(\frac{1}{8}\right)=10 \mathrm{mg}
\end{aligned}
$$

3. Simplify.

$$
\begin{aligned}
& \text { a) }\left(-4 x^{-7} m^{3}\right)^{-3}\left(\frac{2 x^{6} m^{-4}}{x^{9} m^{-1}}\right)^{5} \\
& =\frac{(-4)^{-3} x^{21} m^{-9} 2^{5} x^{30} m^{-20}}{x^{45} m^{-5}} \\
& =\frac{32 x^{51} m^{-29^{45}} m^{-5}}{-64 x^{45} m^{-5}}=\frac{-1 x^{6}}{2 m^{24}}
\end{aligned}
$$

b) $\frac{\left(81 x^{\frac{3}{8}} m^{\frac{1}{3}}\right)^{\frac{1}{4}}}{\left(-27 x^{-6} m^{10}\right)^{\frac{1}{3}}}=$

$$
\begin{aligned}
\frac{3 x^{\frac{3}{32}} m^{\frac{1}{12}}}{-3 x^{-2} m \frac{10}{3}} & =-x^{\frac{3}{32}+2} m^{\frac{1}{12}-\frac{10}{3}} \\
& =-\frac{x^{\frac{67}{32}}}{m^{31 / 12}}
\end{aligned}
$$

4. Evaluate. $4^{-1}\left(3^{-2}+2^{4}\right)^{-2}$

$$
=\frac{1}{4}\left(\frac{1}{9}+16\right)^{-2}=\frac{1}{4}\left(\frac{1+144}{9}\right)^{-2}=\frac{1}{4}\left(\frac{9}{145}\right)^{2}=\frac{81}{84100}
$$

Answers

1. a. $x=-4$
b. $x=-20$
c. $x=-1, x=2$
d. $x=-\frac{17}{16}$
2. 10 mg .
3. a. $-\frac{x^{6}}{2 m^{24}}$
b. $-\frac{x^{\frac{67}{32}}}{m^{\frac{39}{12}}}$
c. $\frac{81}{84100}$

Finding Equation of an Exponential Function:

1. Find the exponential function through $(2,10)$ and $(4,22)$ that has a horizontal asymptote at $y=4$.
(Equation of the form: $y=a b^{x}+c$)

$$
y=a b^{x}+4
$$

subin $(2,10)$ and $(4,22)$

$$
\begin{aligned}
& 10=a b^{2}+4 \Rightarrow 6=a b^{2} \quad \therefore \frac{a b^{4}}{a b^{2}}=\frac{18}{6} \\
& 22=a b^{4}+4 \Rightarrow 18=a b^{4} \quad b^{2}=3 \\
& b=\sqrt{3} \\
& 6=a(\sqrt{3})^{2} \Rightarrow a=\frac{6}{3}=2 .
\end{aligned}
$$

$$
\therefore y=2(\sqrt{3})^{x}+4
$$

2. Find an exponential function that passes through $(3,12.5)$ and $(4,11.25)$ and has a horizontal asymptote of $y=10$. (Equation of the form: $y=a b^{x}+c$)
$y=a b^{x}+10$
$12.5=a b^{3}+10$

$$
11.25=a b^{4}+10
$$

$1.25=a b^{4}$
$\frac{a b^{4}}{a b^{3}}=\frac{1.25}{2.5}$
$2.5=a b^{3}$
$b=\frac{1}{2}$

$$
\left.\begin{array}{rl}
2 \cdot 5=a\left(\frac{1}{2}\right)^{3} \Rightarrow 2.5 & =\frac{a}{8} \\
a & =20
\end{array}\right)
$$

3. The graph of $f(x)=2^{x}$ is compressed vertically by a factor of $\frac{1}{2}$ reflected in the y-axis, and translated right 4 units and downward 5 units.
a) Write the equation of the new function.

$$
y=\frac{1}{2}(2)^{-(x-4)}-5
$$

b) State the domain, range, y-intercept and equation of the horizontal asymptote.

$$
\begin{array}{ll}
D=\{x \in \mathbb{R}\} & y \text {-int: } 3 \\
R=\{y \in \mathbb{R} \mid y>-5\} & H A: y=-5
\end{array}
$$

4. The equation of the function that represents $f(x)=\left(\frac{1}{4}\right)^{x}$ after it is compressed horizontally by a factor of $\frac{1}{2}$,
reflected in the x-axis, and shifted 4 to the left and 6 units up.
a) Write the equation of the new function. $\quad y=-\left(\frac{1}{4}\right)^{2(x+4)}+6$
b) State the domain, range, and equation of the horizontal asymptote.
D: $\{x \in \mathbb{R}\}$
$R:\{y \in \mathbb{R} \mid y<6\}$
$H A: y=6$

Textbook Review: p. 267 \#3ad, 4c, 5d, 7f, 8acd, 11d, 12, 14d, 15c, 16b, 17abcd

