## Unit 4 Review:

1. Graph  $y = 5^{\times}$  and  $y = (1/5)^{\times}$  on the same grid.



- 2. For the curve y = 2(5<sup>x</sup>) 6, determine
  a) the transformations of y = 5<sup>x</sup>
  - · Vertically stretched by a factor of 2 . Vertical translation 5 units down.
  - b) the horizontal asymptote  $\underline{y=-6}$ c) the y-intercept  $\underline{-4}$  [sub x=0]. d) whether the curve is increasing or decreasing increasing. e) the domain:  $\underline{Scars}$ range:  $\underline{syerlyz-62}$ f) sketch the graph

|               |                      | 1 1 1 |          |     |              |     |               |
|---------------|----------------------|-------|----------|-----|--------------|-----|---------------|
|               | 1.1.1.               |       | <b>T</b> | 1   |              |     |               |
|               |                      |       |          | 1   |              |     |               |
| 1 1 1 1       |                      |       |          |     |              |     |               |
|               |                      |       |          |     |              |     |               |
|               |                      |       |          |     |              |     | 1 1           |
| hand a second |                      |       |          | A-4 | - Jacob      |     | -foreigner    |
|               |                      |       |          | 1 1 |              | 1 1 | 1 1           |
|               |                      |       |          |     |              |     | 1-1           |
|               |                      |       |          | 11  |              |     |               |
| <u>├</u>      |                      |       |          |     |              |     |               |
|               |                      |       |          | 11  |              | 1 1 |               |
| J             |                      |       |          | 1   |              |     |               |
|               |                      |       |          | 1 1 |              |     |               |
|               |                      |       |          |     | <u>└──</u> ∤ |     |               |
|               |                      |       |          |     | 111          | 1 1 |               |
| 1. 1 1 1      |                      |       |          |     |              | 1 1 | 4             |
|               |                      |       |          |     |              | 1 1 | 11.           |
|               |                      |       |          |     |              |     |               |
|               |                      |       |          |     |              |     |               |
|               |                      |       |          | 1   | 1 1 1        |     | 1 1 200       |
|               | 1 1 1                | 1 1   |          | 1   |              | 11  | 1 100         |
|               |                      |       |          |     |              |     |               |
|               |                      |       |          | -   |              |     | T             |
| 1 1 1 1       |                      | 1 1 1 |          | 1   |              | 1 1 |               |
|               |                      |       |          |     |              |     |               |
| 1 1 1 1       |                      |       | 1 1 1 1  | 1   |              | 1 1 | 11            |
|               |                      |       |          |     | []           |     |               |
|               |                      | 1 1   | J        |     |              | 1 1 | 1 1           |
|               |                      |       |          |     |              |     |               |
|               |                      |       |          |     |              | 1 1 | 1 1           |
|               |                      |       | 11-      | i   |              | ·   | - <del></del> |
| 1112          |                      | 1     |          | 1   |              | 1 1 |               |
| -             | And the state of the |       |          |     |              |     | ~ <u>}</u>    |
|               |                      | 1 1   |          |     |              | 1 1 | 1-1           |
|               |                      | _t!   |          |     | ↓            |     |               |
|               |                      | 1 1   |          |     |              | 1 1 | 1 1           |
|               |                      |       |          |     |              |     | 1.            |
|               | 1 1 1                | 1 1   |          |     |              |     | 11            |
|               |                      |       |          |     |              |     |               |
|               | 111                  | 1 1   |          |     |              |     |               |
|               |                      |       |          |     |              | 1 1 | 3 8           |

3. Repeat the above for the curve  $4=+5(\frac{1}{2})^{2}+3$ .





÷

- 4. List 2 equivalent powers for each exponential function below.
- a)  $y = 25^{x}$   $25 = 56^{2}$  or  $25 = \left(\frac{1}{25}\right)^{-1}$   $y = 5^{2x}$   $y = \left(\frac{1}{25}\right)^{-x}$   $y = \left(\frac{1}{25}\right)^{-x}$   $y = 2^{-3x}$ 
  - 5. The exponential function  $y = \left(\frac{1}{7}\right)^{3}$  is vertically stretched by a factor of 2, horizontally compressed to  $\frac{1}{4}$ , translated right 3 units and translated up 5 units. State the transformed equation for this exponential function.

 $y = 2(\frac{1}{7}) + 5.$ 

6. Following are the graphs of some exponential functions with equations of the form y = b<sup>×</sup>, b>0. Using what you have learned about exponential functions and without the aid of your calculator, write the equation of each function.



7. A rare coin was bought for \$1200. Its value increases by 5% each year. Determine the coin's value ten years after it was bought.

$$y = 1200(1-0.05)^{n}$$
  
= 1200(0.95)^{n}  
After 10 years:  $y = 1200(0.95)^{n} = 1954.67 \approx 1954.65$ 

8. A small country in Africa must maintain at least 5020 acres of forest at all times. If the government wishes to cut down 11% of the forest every year for the next 4 years, how many acres of forest must the country start with to ensure they abide by the law?

$$\frac{y}{5020} = \alpha (0.89)^{4}$$

$$a = \frac{5020}{0.894} = 8001 \text{ acles}$$
Then imm 227 has a half life of 18.4 days life

9. Thorium-227 has a half-life of 18.4 days. How much time will a 50-mg sample take to decompose to 10 mg? (use "guess and check").  $A = 50 \left(\frac{1}{2}\right)^{\frac{1}{18}}$ . 4  $b = 50 \left(\frac{1}{2}\right)^{\frac{1}{18}}$ . 4 Guess and check t = 42.7. day 5

$$P^{2} = sp + 4 = 0$$

$$P^{2} = sp + 4 = 0$$

$$(P-4)(P-1) = 0$$

$$(2^{2} - 4)$$

**Solutions:** 2. VS by 2, down 6; y = -6, (0, -4), increasing,



4.a)  $\gamma = 5^{2x}$ ,  $\gamma = (1/25)^{-x}$ , etc. b)  $\gamma = (\frac{1}{2})^{3x}$ ,  $8^{-x}$ , etc. 5.  $2(1/7)^{4(x-3)} + 5$ 6.a)  $6^{x} - 3$  b)  $-3^{x+2} + 4$ 7. \$1954.67 8. 8001 acres 9. 42.7 days 3. VS by 5, up 3; y = 3, (0, 8), decreasing,  $D: \{x \in \Box\}, R: \{y \in \Box \mid y > 3\}$ 

 $or 2^{\times}$ 



 $\chi = 2$ 

## **Exponential Equations and Rational Exponents Review.**

1. Solve the following exponential equations. Show all steps.

| a) $4^{2x+5} = \frac{1}{64}$ | b) $27^{x-6} = 9^{2x+1}$                                  |
|------------------------------|-----------------------------------------------------------|
| $4^{2x+5} - 3$               | $(3^3)^{(\alpha-6)} = (3^2)^{(2\alpha+1)}$                |
| 2x+5=3                       | 3x - 18 = 4x + 2                                          |
| $2\alpha = -8$               | 3x - 4x = 2 + 18                                          |
| x = -4                       | -x = 20 $[x = -20]$                                       |
| c) $3(5)^{x^2-x} = 75$       | d) $32^{(2x+1)}(8^{4x}) = \left(\frac{1}{4}\right)^{2-x}$ |
| $5^{2^2-x} = 25 = 5^2$       | $(2^5)^{2x+1}$ $(2^3)^{4x}$ $(17^{-5})^{2-x}$             |
| $\alpha^2 = x - 2 = 0$       |                                                           |
| (x-z)(x+1)=0                 | 0x+5+ 2x=- 2+6x                                           |
|                              | 16x = -17                                                 |
| x=2 or $x=-1$                | x = -17 $16$                                              |

2. A standard can of Red Bull contains about 80 mg of caffeine. Every 5 hours, the mass of caffeine in an adult's bloodstream reduces by half. While studying for a test, Roger drank a can of Red Bull at 11:00 PM last night. Determine the mass of caffeine in Adam's bloodstream at 2 PM today.  $A = BO\left(\frac{1}{2}\right)^{\frac{1}{5}}$  t=15

$$= 80 \left(\frac{1}{2}\right)^{\frac{15}{5}} = 80 \left(\frac{1}{2}\right)^{3} = 80 \left(\frac{1}{2}\right)^{3} = 10 \text{ mg},$$

3. Simplify.

a) 
$$(-4x^{-7}m^3)^{-3}\left(\frac{2x^6m^{-4}}{x^9m^{-1}}\right)^5$$
  
=  $(-4)^{-3}x^{-1}m^{-9}2^5x^{-3}m^{-20}$   
=  $\frac{32x^{-51}m^{-2q^2}m^{-9}2^5x^{-3}m^{-5}}{-64x^{-4}x^{-45}m^{-5}} = \frac{-1x^6}{2m^{24}}$   
4. Evaluate.  $4^{-1}(3^{-2}+2^4)^{-2}$   
b)  $\frac{\left(81x^{\frac{3}{8}m^{\frac{3}{3}}}\right)^{\frac{1}{4}}}{(-27x^{-6}m^{10})^{\frac{1}{3}}} = \frac{3-2c^{\frac{3}{32}}m^{\frac{1}{12}}}{-3-3-2c^{-2}m^{\frac{10}{3}}} = -x^{\frac{3}{32}+2c}m^{\frac{1}{2}-\frac{10}{3}}$   
=  $-x^{\frac{3}{32}+2c}m^{\frac{1}{2}-\frac{10}{3}}$   
=  $-x^{\frac{3}{32}-2c}m^{\frac{10}{2}-\frac{10}{3}}$   
=  $-x^{\frac{3}{32}-2c}m^{\frac{10}{2}-\frac{10}{3}}$ 

$$= \frac{1}{4} \left( \frac{1}{9} + 16 \right)^{2} = \frac{1}{4} \left( \frac{1 + 144}{9} \right)^{2} = \frac{1}{4} \left( \frac{9}{145} \right)^{2} = \frac{81}{54100}$$

Answers

1. a. x = -4b. x = -20c. x = -1, x = 2d.  $x = -\frac{17}{16}$ 2. 10 mg. 3. a.  $-\frac{x^6}{2m^{24}}$ b.  $-\frac{x^{\frac{67}{22}}}{m^{\frac{12}{12}}}$ c.  $\frac{81}{84100}$ 

## Finding Equation of an Exponential Function:

1. Find the exponential function through (2, 10) and (4, 22) that has a horizontal asymptote at y = 4. (Equation of the form:  $y = ab^{x} + c$ )

$$\begin{array}{rcl} y = ab^{2} + 4 \\ \text{subin}(2, 10), and (4, 22): & 10 = ab^{2} + 4 = p & 6 = ab^{2} \\ 22 = ab^{4} + 4 = p & 18 = ab^{4} \\ b^{2} = 3 \\ b = \sqrt{3}, \\ 6 = a(\sqrt{3})^{2} = p & a = \frac{6}{3} = 2 \end{array}$$

- 2. Find an exponential function that passes through (3, 12.5) and (4, 11.25) and has a horizontal asymptote of y = 10. (Equation of the form:  $y = ab^x + c$ )
- 3. The graph of  $f(x) = 2^x$  is compressed vertically by a factor of  $\frac{1}{2}$  reflected in the y-axis, and translated right 4 units and downward 5 units.
  - **a)** Write the equation of the new function.  $y = \frac{1}{2} \begin{pmatrix} 2 \\ 2 \end{pmatrix} 5$

b) State the domain, range, y-intercept and equation of the horizontal asymptote.

$$D = 2x \in \mathbb{R}^{2}$$

$$R = \frac{1}{2}y \in \mathbb{R}^{1} \quad y = -5$$

$$HA : y = -5$$

- 4. The equation of the function that represents  $f(x) = (\frac{1}{4})^x$  after it is compressed horizontally by a factor of  $\frac{1}{2}$ , reflected in the x-axis, and shifted 4 to the left and 6 units up.
  - a) Write the equation of the new function.  $y = -\begin{pmatrix} 1 \\ -4 \end{pmatrix}^2 \begin{pmatrix} x+4 \end{pmatrix} + 6$
  - b) State the domain, range, and equation of the horizontal asymptote.
  - D: ZXER3 HA: Y=6. R: ZYER/ Y<63

Textbook Review: p. 267 #3ad, 4c, 5d, 7f, 8acd, 11d, 12, 14d, 15c, 16b, 17abcd