Date:__

Part 2 - Exponential Decay

The exponential function can be used as a model to solve problems involving exponential decay.

$$A=a(1-r)^n$$

where:

Ex1. A new car costs \$24 000. It loses 18% of its value each year after it is purchased.

a) Find an expression to represent the value of the car after x years.

$$A = 24000$$

$$A = 24000 (1 - 0.18)^{x}$$

$$A = 24000 (0.82)^{x}$$

$$A = 24000 (0.82)^{x}$$

b) Determine the value of the car after 30 months.

A= 24000 (0.82) 1=30 months

For most accurate results
24,000 × 0.82 ∧ (5 Abb 2)

Convert months to years $\frac{30}{10} = \frac{5}{2}$

.. The car's value will be approximately \$ 14,613.22.

= 14613.22

Ex2. A used-car dealer sells a five-year-old car for \$4 200. What was the original value of the car if the depreciation is 15% a year?

r=0.15/year A = 4200 n=5 a = ?

$$A = a(1-r)^{n}$$

$$4200 = a(0.85)^{5}$$

$$(0.85)^{T}$$

$$(0.85)^{5}$$

 $4200 = a(0.85)^{5}$ (alwheter) $4200 = a(0.85)^{5}$ (0.85) 5

9465,74= a

:. It was approximately \$9465.74.

Date:

HALF LIFE

The "half-life" of a radioactive material (an isotope) is the time it takes for a sample to decay to half of the amount. In general, radioactive materials decay according to the following equation:

$$A_L = A_0 \left(\frac{1}{2}\right)^{t/h}$$

where

 A_L is the amount of isotope ____left_____

 A_0 is the original amount of isotope

t is the elapsed time

h is the half-life of the isotope

For example, suppose you have a radioactive isotope that has a mass of 64 mg,

after one half-life, 32 mg is left after two half-lives, 16 mg is left after three half-lives, 8 mg is left after four half-lives, 4 mg is left

Would the sample ever reach a mass of 0 mg?

Ex1. The half-life of ruthenium-106 is 1 year. If an original sample of ruthenium-106 had an original mass of 128 mg, and there are 2 mg left, what is the elapsed time?

h= | year

$$A_0 = |28mg$$
 $A_1 = A_0 \left(\frac{1}{2}\right)^{t/h}$
 $A_1 = 2mg$
 $A_2 = 2mg$
 $A_1 = 2mg$
 $A_2 = 2mg$
 $A_3 = 2mg$
 $A_4 = 2mg$
 $A_4 = 2mg$
 $A_5 = 128mg$
 $A_5 = 128mg$

if the boxes are equal, then $t = 6$
 $A_4 = 2mg$
 $A_5 = 128mg$
 $A_5 = 128mg$

Ex2. A radioactive isotope, iodine-131, is used to determine whether a person has a thyroid deficiency. The iodine-131 is injected into the blood stream. A healthy thyroid gland absorbs all of the iodine. The half-life of iodine-131 is 8.2 days. After how long would 25% of the iodine-131 remain in the thyroid gland of a healthy person?

gland of a healthy person?

$$h = 8.2 \text{ days}$$

$$h = 8.2 \text{ days}$$

$$h = \frac{100}{100} \text{ days}$$

$$A_{c} = \frac{100}{100} \text{ days}$$

then $8.2 \times 2 = \frac{t}{8.2} \times 8.2$ t = 16.4

. 16.4 days have clapsed

PRACTICE

- 1. To determine whether a pancreas is functioning normally, a tracer dye is injected. A normally functioning pancreas secretes 4% of the dye each minute. A doctor injects 0.50 g of the dye.
 - a. If the pancreas is functioning normally, how much dye should remain after 20 minutes?
 - b. The doctor determines that the actual level after 20 minutes is 0.35g. Is the pancreas functioning normally?
- 2. An element is decaying at the rate of 12%/h. Initially we have 100g.
 - a. How much remains after 10 h? (round to the nearest gram)
 - b. How much remains after 30 h? (round to the nearest gram)
 - c. When will there be 40 g left?
- 3. A research assistant made 160 mg of radioactive sodium (Na^{24}) and found that there were only 20 mg left 45 h later.
 - a. What is the half-life of Na²⁴?
 - b. If the laboratory requires 100 mg of Na²⁴ 12 h from now, how much Na²⁴ should the research assistant make now?
 - c. How much of the original 20 mg would be left in 12 h?
- 4. On the day her daughter is born, an excited mother wants to give her new daughter a season's ticket to watch the Toronto Marlies. A season's ticket costs \$900 when the daughter is born, but the mother decides to wait until her daughter is 6 years old before buying the ticket. If inflation is assumed to be 3% per year, how much money will the mother need in 6 years to buy the season's ticket?
- 5. Two different strains of cold virus were isolated and put in cultures to grow. Virus A doubles every 4.8 h while Virus B triples every 8 h. If each culture has 1000 viruses to start, which has more after 24 h?
- 6. A certain radioactive material has a half-life of 35 years. If 100 g is present now, how many grams will be present in 350 years?
- 7. In 30 hours, a sample of plutonium decays to $\frac{1}{256}$ of its original amount. What is the half-life of the substance?

- 1. To determine whether a pancreas is functioning normally, a tracer dye is injected. A normally functioning pancreas secretes 4% of the dye each minute. A doctor injects 0.50 g of the dye.
 - a. If the pancreas is functioning normally, how much dye should remain after 20 minutes?
 - b. The doctor determines that the actual level after 20 minutes is 0.35g. Is the pancreas functioning normally?

a)
$$A = \alpha(1-r)^{n}$$

$$r = 0.04/min$$

$$a = 0.50g$$

$$= 0.50(1-0.04)^{20}$$

$$= 0.50(0.96)^{20}$$

$$= 0.22$$

$$\therefore \text{ There is } 0.22g \text{ left.}$$

- b) No
 - 2. An element is decaying at the rate of 12%/h. Initially we have 100g.
 - a. How much remains after 10 h? (round to the nearest gram)
 - b. How much remains after 30 h? (round to the nearest gram)
 - c. When will there be 40 g left?

a)
$$A = a(1-r)^n$$
 $a = 1009 = 100(1-0.12)^{10}$
 $= 0.12/h = 100(0.88)^{10}$
 $= 28$

b) $A = 100(0.88)^{30}$
 $= 2$

c) $40 = 100(0.88)^n$

Hy numbers for n .

When $n = 5$
 $= 53g$ remaining

 $n = 6$
 $= 46g$
 $n = 7$
 $= 41g$
 $n = 7$.

 $= 41g$
 $= 7$.

 $= 100(1-0.12)^{10}$
 $= 100(0.88)^n$
 $= 100(0.88)^$

. It's after approximately 7.1 h we have 400 left.

- 3. A research assistant made 160 mg of radioactive sodium (Na^{24}) and found that there were only 20 mg left 45 h later.
 - a. What is the half-life of Na²⁴?
 - b. If the laboratory requires 100 mg of Na²⁴ 12 h from now, how much Na²⁴ should the research assistant make now?
 - c. How much of the original 20 mg would be left in 12 h?

a)
$$A_{L} = A_{0} \left(\frac{1}{2}\right)^{4/h}$$
 $A_{0} = 1600 \text{ Mg}$
 $A_{L} = 20 \text{ mg}$
 $A_{L} = 400$
 $A_{L} = 100$
 $A_{L} = 100$

4. On the day her daughter is born, an excited mother wants to give her new daughter a season's ticket to watch the Toronto Marlies. A season's ticket costs \$900 when the daughter is born, but the mother decides to wait until her daughter is 6 years old before buying the ticket. If inflation is assumed to be 3% per year, how much money will the mother need in 6 years to buy the season's ticket?

$$A = a(1+r)^{n}$$

$$a = 900$$

$$n = 6$$

$$= 900(1+0.03)^{b}$$

$$= 900(1.03)^{6} : The dicket will be $1074.65$$

$$= 1074.65$$

5. Two different strains of cold virus were isolated and put in cultures to grow. Virus A doubles every 4.8 h while Virus B triples every 8 h. If each culture has 1000 viruses to start, which has more after 24 h?

Virus A Virus B

$$A = a(2)^{1/4}$$
 danse

 $A = a(3)^{1/4}$ is more by 5000.

6. A certain radioactive material has a half-life of 35 years. If 100 g is present now, how many grams will be present in 350 years?

$$h=35$$
 $A_{c}=100\left(\frac{1}{2}\right)^{10}$
 $t=350$
 $=100\left(\frac{1}{2}\right)^{10}$
 $t=350$
 $=0.0976$
 $t=350$
 $t=350$

7. In 30 hours, a sample of plutonium decays to $\frac{1}{256}$ of its original amount. What is the half-life of the substance?

.. The half life is 3.75h.