\qquad

Unit 2 - Rational Expressions REVIEW

PART 1: KNOWLEDGE AND UNDERSTANDING

1. The correct product of $\frac{(a-3)(a-2)}{(a-1)(a+1)} \times \frac{(a-5)(a+1)}{(a-2)(a+2)}$ simplifies fully to the form:
a) $\frac{(a+3)(a-5)}{(a-1)(a+2)} \quad \frac{(a-3)(a-5)}{(a-1)(a+2)}$
b) $\frac{(a-3)(a-5)}{(a-1)(a-2)}$
c) $\frac{(a-3)(a+5)}{(a+1)(a+2)}$
(a) $\frac{(a-3)(a-5)}{(a-1)(a+2)}$
2. Which expression has restrictions $m \neq-2, m \neq 2$?
a) $\frac{3 m}{m-2} \times \frac{4(m-2)}{6 m}$

(2) $\frac{10 m}{m-2} \div \frac{5}{2(m+2)}$
c) $\frac{(3 m+1)}{(2 m-1)} \times \frac{2 m-1}{3 m(m+1)} \quad(m+2)(m-2)$
d) $\frac{5 m(m+3)}{4 m} \times \frac{(m-5)}{\left(m^{2}-2\right)}$
3. Which rational expression has no restrictions?

b) $\frac{4}{(x+3)^{2}}$
c) $\begin{aligned} & \frac{9 x^{2}}{-9 x^{2}} \\ &-9 x^{2} \neq 0 \\ & x \neq 0\end{aligned}$
(d) $\frac{x^{2}}{1+x^{2}}$

a) $x \neq-3$ and $x \neq 0$
$\frac{(x+5)}{3 x(x+2)}$
b) $x \neq-2$ and $x \neq 2$
c() $x \neq-2$ and $x \neq 0$
$x \neq 0 \quad x \neq-2$
4. The lowest common denominator required to perform the operation $\frac{3 x}{x-3}+\frac{4 x-1}{x^{2}-5 x+6}$ is:
a) $(x-2)^{2}(x-3)$
b) $(x-2)(x-3)$
$\frac{3 x}{(x-3)}+\frac{4 x-1}{(x-2)(x-3)}$
c) $(x+2)(x-3)$
d) $\left(x^{2}-5 x+6\right)(x-2)$

$$
\operatorname{Lc}(x-2)(x-3)
$$

6. The rational expression $\frac{x+1}{x^{2}-1}$ can be reduced to the form:
a) $\frac{-1}{x-1}$
b) $x-1$
c) $\frac{(1+x)}{(x-1)(x+1)}$
Cl $\frac{1}{x-1}$
$\frac{(x+1)}{(x-1)(x+1)}=\frac{1}{x-1}$

$$
\frac{\text { no cost }}{2} \longleftarrow \frac{1-3 x}{x^{2}+9} \div \frac{2}{(2-x)(2+x)}=\frac{1-3 x}{x^{2}+9} \cdot \frac{(2-x)(2+x)}{2}
$$

7. The quotient $\frac{1-3 x}{x^{2}+9} \div \frac{2}{4-x^{2}}$ has a total of: $\quad x \neq 72$
(a) Two restrictions ∓ 2
b) Three restrictions
c) Four restrictions
d) Five restrictions
8. Simplify fully and state restrictions. You must show how you:

- Factored fully including: common factors, simple trinomials, decomposition, difference of squares
- Reduced each rational expression to lowest terms (where applicable)
$M=2$ - Simplified fully (either by reducing, multiplying/dividing, or adding/subtracting)
$\mathrm{N}=1-2$

$\sum_{1}^{2}=\frac{(x-1)(x+1)}{(2 x-1)(x-1)} \Rightarrow x \neq \frac{1}{2}, x \neq 1$
$\frac{(2 x-1)(2)(x-1)}{2}=\frac{x+1}{2 x-1} \Rightarrow x \neq \frac{1}{2}, x \neq 1$
d)
$\frac{x^{2}}{x+2}+\left[\frac{x^{2}+x-12}{x^{2}+2 x} \div \frac{(2 x+1)(x-3)}{4 x^{3}+2 x^{2}}\right]$
$=\frac{(x-2)(x-7)}{(x+3)(x+4)} \div \frac{x(7-x)}{4(x+4)} \Rightarrow \begin{aligned} & x \neq-3 \\ & x \neq-4\end{aligned} \left\lvert\, \frac{x^{2}}{x+2}+\left[\frac{(x-3)(x+4)}{x(x+2)} \div \frac{(2 x+1)(x-3)}{2 x^{2}(2 x+1)}\right] \Rightarrow \begin{aligned} & x \neq-\frac{1}{2} \\ & x \neq 0 \\ & x \neq-2\end{aligned}\right.$

9. In each of the examples below errors were made. Either the final answer is wrong, or the restriction is wrong, or both. Correct all errors for each rational expression.
a)

$y \neq 3$
$\frac{(y-4)(y-4)}{(y-4)(y+4)}$
$\frac{y-4}{y+4} \quad y=1-4,4$

10. The length of a flag can be represented by the expression $9+3 x$ and the area can be represented by the expression $3 x^{2}+30 x+63$ respectively.
a) Write a simplified expression to represent the width of the flag. State restrictions.
b) Find a simplified expression to represent the perimeter of the flag.
c) Do any restrictions on the variable apply? Justify.

$$
\begin{gathered}
A=3 x^{2}+30 x+63 \\
9+3 x
\end{gathered}
$$

a) $A=L \times \omega$
ω

$$
\left(3 x^{2}+30 x+63\right)=(9+3 x) w
$$

$$
\frac{3\left(x^{2}+10 x+21\right)}{3(3+x)}=\frac{3(3+x)}{3(3+x)} \mathrm{W} \text { divide each side by } 3(3+x)
$$

$$
\frac{(x+3)(x+7)}{(x+3)}=w \Rightarrow x \neq-3 \begin{aligned}
& \text { factor wherver possible } \\
& \text { note restrictions } \\
& \text { Simplify }
\end{aligned}
$$

b)

$$
\begin{aligned}
P & =2(L+\omega) \\
& =2(9+3 x+x+7) \\
& =2(4 x+16)
\end{aligned}
$$

$P=8 x+32$
Since the perimeter is a linear function there is no restriction.
11. Write a single rational expression with the two restrictions $x \neq 0$ and
if $x \neq 0$, then x is being multiplied by any number.
if $x \neq \frac{-1}{2}$, then $x+\frac{1}{2} \neq 0$

$$
\therefore \frac{1}{x\left(x+\frac{1}{2}\right)}
$$

12. Solve for x if the reciprocal of $\left(\frac{1}{x}-1\right)$ is - 2 .
\qquad
13. Simplify fully and state the restrictions. Show your factored steps, but not your factoring work.
a) $\frac{24 y^{2} z^{1}}{15^{2} x^{3} / y f^{2}}$

$$
=\frac{3 y z^{2}}{2 x^{2}}
$$

$$
\begin{aligned}
& x \neq 0 \\
& y \neq 0 \\
& z \neq 0 \\
& x \neq 0 \\
& y \neq 0 \\
& z \neq 0
\end{aligned}
$$

c) $\frac{2 a^{2}+a b-3 b^{2}}{b^{2}-a^{2}}$

$$
\begin{array}{ll}
M: 2 x-3=-6 & -b^{2}-a^{2} \\
A: 1 & =\frac{(a-b)(2 a+3 b)}{(b-a)(b+a)} \\
N:-2,+3 & b \neq a \\
\frac{(2 a-2 b)(2 a+3 b)}{2}=\frac{2 a+3 b}{a+b} & a \neq b \\
\frac{2(a-b)(2 a+3 b)}{2} & a \neq-b
\end{array}
$$

b) $\frac{20 m n}{24 n^{2}} \times \frac{3 n}{5 m^{2}} \quad m \neq 0, n \neq 0$

$$
=\frac{(20)(3) m n^{24}}{(24)(5) m^{2} n^{2}}
$$

28

$$
=\frac{1}{2 m} m, n \neq 0
$$

d) $\frac{1+\frac{1}{x}}{1-\frac{1}{x^{2}}}=\frac{\frac{x+1}{x}}{\frac{x^{2}-1}{x}}=\frac{x+1}{x} \div \frac{x^{2}-1}{x} \Rightarrow x \neq 0$
$\frac{(x+1)^{2}}{x} \cdot \frac{x}{(x-1)(x+1)} \begin{aligned} & x \neq 0 \\ & x \neq \mp 1\end{aligned}$

$$
=\frac{1}{x-1} \quad x \neq 0, x \neq \mp 1
$$

14. Simplify fully and state all restrictions.

$$
\frac{w^{2}+4 w-21}{w^{2}+2 w-35} \div \frac{9 w^{2}-1}{3 w^{2}-16 w+5}
$$

$$
\rightarrow \quad \begin{array}{ll}
\frac{(3 w-1)(3 w-15)}{3} & \begin{array}{l}
M: 3 \times 5=15 \\
A:-16
\end{array} \\
\frac{(3 w-1)(3)(w-5)}{3} &
\end{array}
$$

(1) Factor
$=\frac{(w-3)(w+7)}{(w-5)(w+7)} \div \frac{(3 w-1)(3 w+1)}{(3 w-1)(w-5)}$

$$
w \neq 5, w \neq-7, w \neq \frac{1}{3}
$$

$$
=\frac{(w-3)(w+7)}{(w-5)(w+7)} \cdot \frac{(3 w-1)(w-5)}{(3 w-1)(3 w+1)}
$$

$$
w \neq 5, w \neq-7, w \neq \mp \frac{1}{3}
$$

$=\frac{\omega-3}{3 \omega+1} \quad \omega \neq-7,-\frac{1}{3}, \frac{1}{3}, 5$
15. Simplify and reduce fully, and state all restrictions.

$$
\begin{aligned}
& \frac{y+4}{\left.y^{2}+y-\right)^{2}}-\frac{6}{y^{2}-5 y-14} \\
= & \frac{(y+4)^{2}}{(y-1)(y+2)}-\frac{6}{(y+2)(y-7)} \quad L C D=(y-1)(y+2)(y-7) \quad y \neq 1,-2,7 \\
= & \frac{(y+4)(y-7)}{(y-1)(y+2)(y-7)}-\frac{6(y-1)}{(y+2)(y-7)(y-1)} \\
= & \frac{y^{2}-7 y+4 y-28-6 y+6}{(y-1)(y+2)(y-7)} \\
= & \frac{y^{2}-9 y-22}{(y-1)(y+2)(y-7)} \\
= & \frac{(y+2)(y-11)}{(y-1)(y+2)(y-7)} \quad y \neq 1,-2,7
\end{aligned}(y+2)(y-11) \quad M=1 x-22=-22
$$

PART 2: APPLICATION
16. A rectangular prism has length $=\frac{2 x-5}{x+4}$, width $=\frac{3 x+2}{3 x-1}$, and height $=\frac{x+4}{3 x+1}$, all in metres.
a) Determine a simplified expression for the volume of the rectangular prism. Express your answer as a quotient of two polynomials in standard (not factored) form, and state any restrictions.
b) Determine the volume when $x=4$ metres.
a)

$$
\begin{aligned}
& V=l \times \omega \times h \\
& V(x)=\frac{(2 x-5)}{(x+4)} \cdot \frac{(3 x+2)}{(3 x-1)} \cdot \frac{(x+4)}{(3 x+1)} \quad x \neq-4, \quad x \neq \frac{1}{3}, \quad x \neq \frac{-1}{3} \\
& V(x)=\frac{(2 x-5)(3 x+2)}{(3 x-1)(3 x+1)} \quad \Rightarrow x \neq \frac{-1}{3}, \frac{1}{3},-4
\end{aligned}
$$

b) $V(4)=\frac{(2 \cdot 4 \cdot 5)(3 \cdot 4+2)}{(3 \cdot 4-1)(3 \cdot 4+1)}=\frac{(8-5)(12+2)}{(12-1)(12+1)}=\frac{3 \cdot 14}{11 \cdot 13}$

$$
\begin{aligned}
& V(4)=\frac{42}{143} \\
& \therefore V(4)=0.29 \mathrm{~m}^{2}
\end{aligned}
$$

\qquad
17. There are 2 rational expressions, P / Q and R / S, where $Q=x^{2}-16, R=x+2$, and $S=x^{2}-x-12$. If $P / Q+R / S=A / B$, where $A=6 x^{2}+19 x+2$, determine an expression for P.

$$
\frac{P}{Q}+\frac{R}{S}=\frac{A}{B}
$$

$$
\text { (1) } \frac{P}{x^{2}-16}+\frac{x+2}{x^{2}-x-12}=\frac{6 x^{2}+19 x+2}{B}
$$

$M: 12$
A: 19
$N: ?$
(2) $\frac{P}{(x-4)(x+4)}+\frac{x+2}{(x+3)(x-4)}=\frac{6 x^{2}+19 x+2}{B} \quad L C D=(x$
(3) $\frac{P(x+3)}{(x-4)(x+4)(x+3)}+\frac{(x+2)(x+4)}{(x+3)(x-4)(x+4)}=\frac{6 x^{2}+19 x+2}{B}$
(4) $\frac{P(x+3)+x^{2}+6 x+8}{(x-4)(x+4)(x+3)}=\frac{6 x^{2}+19 x+2}{B}$

$$
\underbrace{}_{p=} \frac{(5 x-2)(x+3)}{(x+2)} \quad x \neq-2
$$

$$
\begin{array}{r}
\Rightarrow(x+3)+x^{2}+6 x+8=6 x^{2}+19 x+2 \\
P(x+2)=5 x^{2}+13 x-6 \\
P=\frac{5 x^{2}+13 x-6}{(x+2)}
\end{array}
$$

18. The area of a rectangular field is given by the expression $x^{2}+8 x+15$.
a) Determine the expressions that represent the dimensions of the field.
b) Determine a fully simplified expression for the perimeter of the field.

$$
\begin{aligned}
& A=\left(x^{2}+8 x+15\right) \begin{array}{l}
\text { a) } A \\
\\
\\
x^{2}+8 x+15=l \times \omega
\end{array} \\
&(x+3)(x+5)=l+\omega
\end{aligned}
$$

$$
\begin{array}{r}
\because \text { Length }=x+5 \\
\text { width }=x+3
\end{array}
$$

b)

$$
\begin{aligned}
P & =2(L+\omega) \\
& =2(x+5+x+3) \\
& =2(2 x+8) \\
P & =4 x+16
\end{aligned}
$$

\qquad

PART 3: THINKING
14. Given triangle $A B C$ below, determine a simplified expression that represents the perimeter of $\triangle A B C$. State restrictions, if any.

$$
\begin{aligned}
P & =a+b+c \\
P & =\frac{g+1}{2 g+6}+\frac{g-1}{g+3}+\frac{9}{g-1} \\
& =\frac{g+1}{2(g+3)}+\frac{g-1}{g+3}+\frac{g}{g-1} \quad \begin{array}{l}
g \neq-3,1 \\
\alpha C D=2(g+3)(g-1)
\end{array}
\end{aligned}
$$

$$
P=\frac{(g+1)(g-1)}{2(g+3)(g-1)}+\frac{(g-1)(2)(g-1)}{(g+3)(2)(g-1)}+\frac{(g)(2)(g+3)}{(g-1)(2)(g+3)}
$$

$$
P=\frac{g^{2}-1+2\left(g^{2}-2 g+1\right)+2 g^{2}+6 g}{2(g-1)(g+3)} \quad g \neq 1, g \neq-3
$$

$$
=\frac{2 g^{2}-4 g+2+3 g^{2}+6 g-1}{2(g-1)(g+3)}
$$

$$
=\frac{5 q^{2}+2 q+1}{2(g-1)(p+3)} \quad ; \neq 1,-3
$$

M: 5
A: 2
$N: ?$
\qquad
15. Hanz and Franz are walking 60 km to raise money to fight Breast Cancer. Franz walks $1 \mathrm{~km} / \mathrm{h}$ faster than Hanz, but stops for 30 min to sign autographs. They start at the same time, but Franz finishes $2 \frac{1}{2}$ hours before Hank. How fast was each person walking, and how long did it take for each person to finish the walk? Let " x " be Hanz's speed

NAME	Distance	Speed	Time
Hank	60 km	x	$\frac{60}{x}$
Franz	60 km	$x+1$	$\frac{60}{x+1}+0.5$

$\underbrace{\text { Franz finishes }} 2 \frac{1}{2} \mathrm{~h}(2.5 \mathrm{~h}) \underbrace{\text { before Hank }}$

$$
\underbrace{\frac{60}{x+1}}_{\text {Front }}+0.5=\underbrace{\frac{60}{x}}_{\text {Hent }}-2.5
$$

$$
0.5+2.5=\frac{60}{x}-\frac{60}{x+1} \quad \alpha C D=(x)(x+1)
$$

$$
3=\frac{60(x+1)}{x(x+1)}-\frac{60(x)}{(x+1)(x)}
$$

$$
3=\frac{60 x+60-60 x}{x^{2}+x} \quad \text { cross multiply }
$$

$$
\begin{aligned}
& 3 x^{2}+3 x=60 \\
& 3 x^{2}+3 x-60=0 \\
& \frac{3\left(x^{2}+x-20\right)}{3}=\frac{0}{3} \\
& (x-4)(x+5)=0 \\
& x-4=0 \quad x+5=0
\end{aligned}
$$

$$
x=4 \quad x=-5 \rightarrow \text { speed cant be negative }
$$

\therefore Honz's speed $4 \mathrm{~km} / \mathrm{h}$

