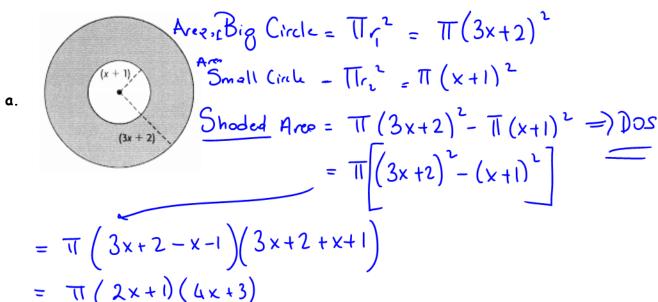
Chapter 5: Quadratic Expressions

1. Sydney Harbour Bridge in Australia is usually wide for a long-span bridge. It carries two rail lines, eight road lanes, a cycle lane, and a walkway.

a. Factor the expression $10x^2 - 7x - 3$ to find the length and the width of the bridge.

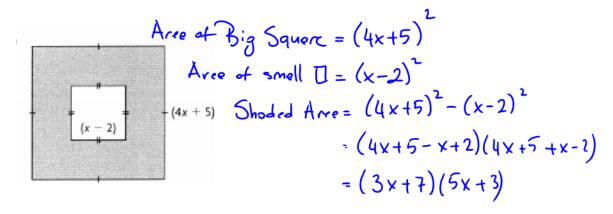
$$10x^{2}-7x-3$$
 $10x^{2}+3x-10x-3$
 $X(10x+3)-(10x+3)$
 $(10x+3)(x-1)$
 $(10x+3)(x-1)$
 $(10x+3)(x-1)$

1

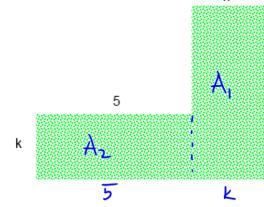

b. If x represents 50 m, what are the length and the width of the bridge, in metres?

length =
$$10x + 3$$
 width = $x - 1$
= $10(50) + 3$ = $50 - 1$
= $503m$ = $49m$

2. The height of a ball thrown from the top of a building can be approximated by the formula $h = -5t^2 + 15t + 20$, where t is the time, in seconds, and h is the height, in metres.

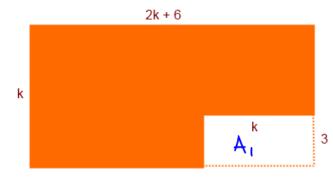

a. Write the formula in factored form. Hint: Remove the GCF first

3. Determine a simplified factored expression for the area of shaded region.



Chapter 5: Quadratic Expressions

b.

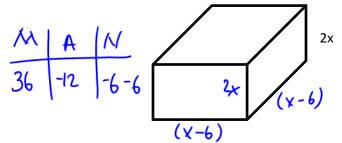

c.

$$A_1 = k(2k+1) = 2k^2+k$$

 $A_2 = k(5) = 5k$

2k+1

d.



Shoded = Arce of Area of Area =
$$\frac{1}{2} = \frac{1}{2} = \frac{$$

Chapter 5: Quadratic Expressions

a. Factor the polynomial completely to determine the dimensions of the prism.

Remember that V = lwh $2x(x^2-12x+36)$ $= 2 \times (x - 6)(x - 6)$

b. If x represents 8cm, what are the possible dimensions of the prism?

= 2rm

Length = x-6 width = x-6 = 8-6

c. Could x represent 5 cm? Explain.

No, b/c a dimension comot be a negotive volve.

5. Write a polynomial with three terms that when factored has a GCF of $3x^4y^2z$.

9x4y22 + 3x3y3z + 36xyz

Answers will vory

6. Determine a possible value of k such that $x^2 + kx - 10$ can be factored as a simple trinomial.