\qquad

Knowledge	Application	THINKING
$/ 12$	$/ 21$	$/ 10$

Knowledge:

1. Given the points $A(-1,5), \quad B(2,9), \quad C(-4,8)$, then determine the following:
a) the slope of the line passing through $A B$.
[2]
b) the slope of the line perpendicular to the line segment $A C$.
c) the midpoint of the line segment $B C$.
[2]
d) the exact length of the line segment $A C$.
[2]
2. Determine the equation of the line in standard form that is perpendicular to the line $3 x-6 y+8=0$ and passes through the point $P(-1,2)$.
[4]

Application:

3. The point $F(3,-9)$ is the midpoint of the line segment JK. If endpoint J is located at $(x, 2)$ and K is located at $(17, y)$, find the value of the missing coordinates.
[4]
4. On the grid below, draw triangle $A H S$ with vertices $A(4,8), H(-4,-2)$, and $S(8,-8)$. Draw a labelled diagram of the median from H to $A S$. Determine algebraically the length of the median from H to $A S$.
[4]

5. On the grid below, draw triangle $T R W$ with vertices $T(-7,3) R(-3,9) W(9,1)$. Draw a labelled diagram of the altitude from R to $T W$. Determine algebraically the equation of the altitude.
[5]

6. The coordinates of two towns are $T(8,3)$ and $G(2,-9)$. Plot and label the two towns on the grid below. Draw a labelled diagram of the perpendicular bisector of the line segment joining these two towns. Determine algebraically the equation of the perpendicular bisector. If the two towns have decided to build a recreation centre at $(-5,2)$, determine if this is a good place to build. Justify your answer.
[8]

THINKING:

7. Determine the shortest distance from the point $Q(5,-4)$ to the line $4 x-3 y+18=0$. Include a fully labelled diagram. Include an algebraic solution.

