Day 7: 7.1-Solving Exponential Equations
Warm Up: simplify the following using logarithm laws. State any restrictions if necessary.

$$
\begin{aligned}
& \log \left(x^{2}-3 x-4\right)-\log \left(x^{2}-1\right) \\
= & \log \left(\frac{x^{2}-3 x-4}{x^{2}-1}\right) \\
= & \log \left(\frac{(x-4)(x+1)}{(x-1)(x+1)}\right) \\
= & \log \frac{(x-4)}{(x-1)}
\end{aligned}
$$

We have seen in lesson 6.1 how changing the base of one or more exponential expressions is a useful technique for solving exponential equations. If there is no common base, we have other techniques.

To solve an exponential equation without a common base:

- Take logarithm of both sides and apply power law
- Rewrite from exponential to logarithmic form or vice versa
- If a quadratic equation is obtained, apply factoring (or quadratic formula) techniques
*Some solutions lead to extraneous roots, which are not valid solutions to the original equation

EX 1 - Solve for x . Identify and reject any extraneous roots.
a) $100=50(1.03)^{2 \mathbb{2}}$

02

$$
1.03=2
$$

$$
1.03^{2 x}=2
$$

$$
\log \log 3^{(x x)}=\log 2
$$

$$
\begin{aligned}
2 x & =\frac{\log 2}{\log 1.03} \\
& =\frac{\log 2}{2 \log 1.03} \\
& =\frac{\log 2}{\log 1.03^{2}}
\end{aligned}
$$

b) $4^{2 x-1}=3^{x+2}$

Soln 1: $\log 4^{2 x-1}=\log 3^{x+2}$

$$
\begin{gathered}
(2 x-1) \log 4=(x+2) \log 3 \\
2 x \log 4-\log 4=x \log 3+2 \log 3 \\
2 x \log 4-x \log 3=2 \log 3+\log 4 \\
x\left[\log \frac{4^{2}}{3}\right]=\log 3^{2} 4 \\
x=\frac{\log \left[3^{2} \cdot 4\right]}{\log (4)}=\frac{\log (36)}{\log (16 / 3)}
\end{gathered}
$$

c) $3^{2 x}+3^{x}-12=0$

$$
\begin{aligned}
& p^{2}+p-12=0 \quad\left[p=3^{2 x}\right] \\
& (p+4)(p-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& d \\
& p=-4 \\
& 3^{2 x}=-4
\end{aligned}
$$

$$
3^{2}
$$

NoSOn

$$
\begin{aligned}
3^{2 x} & =3^{0} \\
2 x & =0 \\
x & =0
\end{aligned}
$$

5012

$$
\begin{aligned}
& 4^{2 x} 4^{-1}=3^{x} 3^{2} \\
& \frac{\left(4^{2}\right)^{x}}{3^{x}}=\frac{3^{2}}{4^{-1}} \\
& \Rightarrow\left(\frac{4^{2}}{3}\right)^{x}=3^{2} \cdot 4 \\
& x=\frac{\log \left[3^{2}(4)\right]}{\log \left[4^{2} / 3\right]} \\
& =\frac{\log 3 e}{\log 16 / 3}
\end{aligned}
$$

d) $5^{x}-20(5)^{-x}=1 \quad \Rightarrow \quad 5^{x}-\frac{20}{5^{4 x}}=1$

$$
\begin{aligned}
& p-\frac{20}{p}=1 \\
& p^{2}-20=p \\
& p^{2}-p-20=0 \\
& (p+4)(p-5)=0 \\
& P=-4 \quad P=5
\end{aligned}
$$

No soil

$$
5^{x}=5
$$

To solve any growth or decay word problems, use the following equation: $A=A_{0}(1 \pm r)^{n}$ Where..

A represents final amount
(+) represents growth
r represents growth rate
A_{0} represents initial amount
(-) represents decay
n represents number of growth/decay periods
where h represents half life
where d represents doubling time

EX 2-Half-life is the time taken for a radioactive substance to decay to half of its initial amount. A 50-mg sample of radioactive iodine decays to 23 mg after 12 minutes. Determine the half-life of radioactive iodine.

$$
\begin{aligned}
& A=a\left(\frac{1}{2}\right)^{t / h} \\
& 23=50\left(\frac{1}{2}\right)^{\frac{12}{h}} \\
& \cdot(0.5)^{12 / h} \\
& 0.46=(0.5) \\
& \therefore \text { half like coast } \\
& \frac{12}{n}=\frac{\log 0.46}{\log 0.5} \\
& h=\frac{(12)(\log 0.5)}{1 \log 0.46}=10.71 \text { minecter }
\end{aligned}
$$

