Day 7: 7.1– Solving Exponential Equations

Warm Up: simplify the following using logarithm laws. State any restrictions if necessary.

We have seen in lesson 6.1 how changing the base of one or more exponential expressions is a useful technique for solving exponential equations. If there is **no common base**, we have other techniques.

To solve an exponential equation without a common base:

- Take logarithm of both sides and apply power law
- Rewrite from exponential to logarithmic form or vice versa
- If a quadratic equation is obtained, apply factoring (or quadratic formula) techniques

*Some solutions lead to extraneous roots, which are not valid solutions to the original equation

EX 1 – Solve for x. *Identify and reject any extraneous roots.*

a)
$$100 = 50(1.03)^{24}$$

 $1.03^{2\cdot 4} = 2$
 $1.03^{2\cdot 4} = 2$
 $109_{1.03} = 2$
 $109_{1.03} = 2$
 $109_{1.03} = 2$
 $\frac{109}{2} = 2$
 $\frac{109$

Page | 24

b)
$$4^{2x+1} = 3^{x+2}$$

Solⁿ1: $\log 4^{2} = \log 3^{x+2}$
 $(2x-1) \log 4 = (x+2) \log 3$
 $2x \log 4 - \log 4 = x \log 3 + 2 \log 3$
 $2x \log 4 - \log 4 = x \log 3 + 2 \log 3$
 $2x \log 4 - x \log 3 = 2 \log 3 + \log 4$
 $x [\log \frac{4^{2}}{3}] = \log 3^{2} + 4$
 $x = \frac{\log (3^{2} + 4)}{\log (4^{2} - 3)} = \frac{\log (36)}{\log (16/3)}$
 $x = \frac{\log (3^{2} + 3)}{\log (4^{2} - 3)} = \frac{\log (36)}{\log (16/3)}$
 $x = \frac{\log (3^{2} + 3)}{\log (4^{2} - 3)} = \frac{\log (36)}{\log (16/3)}$
 $x = \frac{\log (3^{2} - 4)}{\log (4^{2} - 3)} = \frac{\log (36)}{\log (16/3)}$
 $x = \frac{\log (3^{2} - 4)}{\log (4^{2} - 3)} = \frac{\log (36)}{\log (16/3)}$

c)
$$3^{2x} + 3^{x} - 12 = 0$$

 $p^{2} + p - 12 = 0$ [$p = 3^{2x}$]
($p + 4$) ($p - 1$) = 0
1
 $p = -4$ $p = 1$
 $3^{2x} = -4$ $3^{2x} = 1$
No soin $3^{2x} = -3^{2x}$
 $2x = 0$
 $x = 0$

d) $5^{x} - 20(5)^{x} = 1 = 3$ $p^{2} - 20 = 1$ $p^{2} - 20 = p$ $p^{2} - 20 = p$ $p^{2} - 20 = p$ $p^{2} - 20 = 0$ $p^{2} - 20 = 0$ $p^{2} - 20 = 0$

To solve any growth or decay word problems, use the following equation: $A = A_0(1 \pm r)^n$ Where..A represents final amount(+) represents growth(-) represents initial amount(+) represents growth(-) represents decayr represents growth raten represents number of growth/decay periods* Half -life: $A = A_0 \left(\frac{1}{2}\right)^{\frac{1}{h}}$ where h represents half life* Doubling time: $A = A_0(2)^{\frac{1}{d}}$ where d represents doubling time

EX 2 - *Half-life* is the time taken for a radioactive substance to decay to half of its initial amount. A 50-mg sample of radioactive iodine decays to 23 mg after 12 minutes. Determine the half-life of radioactive iodine.

$$A = \alpha \left(\frac{1}{2}\right)^{\frac{12}{h}}$$

$$23 = 50 \left(\frac{1}{2}\right)^{\frac{12}{h}}$$

$$0.46 = 10.5^{\frac{12}{h}}$$

$$\frac{12}{h} = \frac{109 \ 0.46}{109 \ 0.5}$$

$$\frac{12}{h} = \frac{109 \ 0.46}{109 \ 0.5}$$

$$A = \frac{(12)(109 \ 0.5)}{(90.46} = 10.71 \ \text{Minutes}$$
Page | 26