Day 6 - Solving Inequalities
EX 1 - Let $f(x)=x$ and $g(x)=(x-2)^{2}$. Solve $f(x)>g(x)$ both graphically and algebraically.

$$
\begin{gathered}
x>(x-2)^{2} \\
x)>x^{2} \cdot 4 x+4 \\
x^{2}-5 x+4<0 \\
(x-4)(x-1)(4) \\
+0 \\
1 \quad 4 \in(1,4) \\
1<x<4
\end{gathered}
$$

EX 2: Let $f(x)=x^{3}-3 x^{2}-4 x$ and $g(x)=-x^{2}+x-6$. Solve $f(x) \leq g(x)$ algebraically.

$$
\begin{aligned}
& x^{3}-3 x^{2}-4 x \leq-x^{2}+x-6 \\
& x^{3}-2 x^{2}-5 x+6 \leq 0 \mid \text { Let } p(x)=x^{3}-2 x^{2}-5 x+6 \\
& (x-1)(x-3)(x+2) \leq 0 \\
& \text { (24) } \\
& p(1)=0 \Rightarrow(x-1) \text { iss } \\
& \text { factor } \\
& 1 \left\lvert\, \begin{array}{cccc}
1 & -2 & -5 & 6 \\
1 & -1 & -1 & -6 \\
1 & -1 & -6 & 0
\end{array}\right. \\
& \therefore p(x)=(x-1)\left(x^{2}-x-6\right) \\
& x \in(-\infty,-2] \cup[1,3] \\
& =(x-1)(x-3)(x+2)
\end{aligned}
$$

EX 3: A computer store's cost, C, for shipping and storing n computers can be modeled by the function $C(n)=1.5 n+\frac{200000}{n}$. The storage capacity of the store's warehouse is 750 units.
a) The function is graphed to the right. What is the domain of the function in the context of the

$$
\left\{\begin{array}{c}
\text { question? } \\
n \in \mathbb{N}, 0<n \leq 750
\end{array}\right\}
$$

$$
n \in(0,750], n \in \mathbb{N}
$$

b) Determine the number of computers that should be shipped or stored to keep costs below $\$ 1500$.

Prove algebraically. Graphically: $150<n \leqslant 750$

$$
\begin{aligned}
& 1.5 n+\frac{200000}{n}<1500 \\
& n\left(1.5 n+\frac{200000}{n}-1500\right)<0 . \\
& 1.5 n^{2}-1500 n+200000<0 \\
& \text { USE aF } n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& n_{1}=158.4 \quad n_{2}=841.5 \\
& \frac{t}{1} \frac{159}{150} \\
& 159<n \leqslant 750
\end{aligned}
$$

$\sin x>\log x$
EX 4 - Below, $f(x)=\sin x$ and $g(x)=\log x$ are graphed. Determine when $f(x)>g(x)$

Homework:

