Day 7: Implicit Differentiation

Consider the following 2 equations describing familiar curves:
y=x"+3  parabola

x*+y* =4 circle

The first equation defines y as a function of x explicitly, since for each x, the equation gives anrexplicit formula
y = f(x)for finding the corresponding value of y.

The second equation does not define a function, since it fails the vertical line test. However you can solve for y
and find at least 2 functions (y = —/4 — x> and y =+/4 — x*) that are defined implicitly by the equation

x” +y* = 4. If we wanted to find the derivative at a point x = ¢ then we would have to calculate f'(c) for

each implicitly defined function. In the case of the circle, there are 2 slopes for every x = ¢ where the
derivative exists (in this example x=2 would give a vertical slope, s0 no derivative there).
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Find the equation of each tangent line:
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Here's how we use implicit differentiation on our circle example:
x*+y' =4
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Check that the points (1,\/?7) and (1, 3 ) gives the same results as when we did explicit differentiation.
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Find -f?y for x> +y° — 2y = 3. Then, find the slope of the tangent line at the point (2,1).
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Example

d
Find a’—y for x°y* —2x = 4 —4y. Then, find the slope of the tangent line at the point (2,-2).
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Hey, remember van der Waal's equation(P + I;/—ZaJ (V —nb)=nRT.

dv
Find E;]f n=1, a=5, b=0.03, R=0.97, and T=10. How is volume changing w.r.t. pressure when the pressure is 1

and the volume is 5? Those crazy chemists have some funky curves.
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Example (90°, right, perpendicular, normal, orthogonal)
Show that any curve of the form xy = ¢ for some constant c intersects any curve of the form x* — y* = kfor

some constant k, at right angles (that is the tangent lines to the curve at the intersection pointare ,
perpendicular). In this case, we say that the families of curves are orthogonal. The graph shown is when c= -
and k=5
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