2y 14 Introduction to Derivatives

In the previous sections, we looked at rates of change and were able to determine the slope of a tangent line as
the limit of the slopes of secant lines. This amazing result allowed us to calculate instantaneous rates of change
of a function at any point. The instantaneous rate of a function is called the derivative and the study of
derivatives is called differential calculus.

Definition: Derivative

The derivative of a function f w.r.t. (with respect to) the variable x is the function f'

whose value at x is:
J'(x)=lim

[ /'(x)is pronounced “f prime of x" ]

provided the limit exits
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Does this definition look familiar? It does since it is the same formula we used in the previous chapter to find
the slope of the tangent line; which is what the derivative is.

Notation: The derivative of a function y = f(x) can be denoted by the following symbols:

' (. D 4y d()L'b' tati
y () % I dxf x) (Leibniz notation)

Derivative of f(x) at x =3 can be written as f'(3)

Ex1: Find the derivative function of y = x2 - 3x + 5. Use the derivative to find the slope of the tangent at x=3
and then find the equation of the tangent. Loeh)e Cortld SO TR
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Conditions for the Derivative to Exist
The domain of " is the set of all points for which the domain of f for which the limit exists. It may be

)

smaller than the domain of f .
o If f'(x)exists, wesay f has a derivative (is differentiable) at x.

e A function that is differentiable at every point of its domain is a differentiable function. j
4 examples of how f"'(a) does not exist (\ ‘ /?\
1. A corner, where 1 sided derivatives differ, example f{(x)=| x| g

\ ' : ‘ 2. A cusp, where the slopes of the secants approach oo from one side and -co
} : | 7 fromthe other side, example f(x)=x?

+ approach coor -

3. A wvertical tangent, where the slopes of the tangent
. _3 SEEaEE A
oo from both sides, example f(x) = AUx i =

4. A discontinuity, where one or both 1-sided limits FAIL to exist, example

-1,x<0

f(x):{leO

What do you notice about the above examples?
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Using the difference of quotient to find the derivatives f'(x)=

1f(x) =x 2.f(x) = T
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