
ji Itatroduciicm to Derivatives
In the previous sections, we looked at rates of change and were able to determine the slope of a tangent line as 
the limit of the slopes of secant lines. This amazing result allowed us to calculate instantaneous rates of change 
of a function at any point. The instantaneous rate of a function is called the derivative and the study of 
derivatives is called differential calculus.

Definition'- Derivative
The derivative of a function f w.r.t. (with respect to) the variable x is the function f
whose value at x is:

f(x + h) — f(x) -II, .
f (x) = lim-------- --------- provided the limit exits

[/'(x) is pronounced "f prime of x" ]

Does this definition look familiar? It does since it is the same formula we used in the previous chapter to find 
the slope of the tangent line; which is what the derivative is.

Notation: The derivative of a function y =f(x) can be denoted by the following symbols:

dy d
y' fix) Dxy — —f(x) (Leibniz notation)ttA tt A

Derivative of f(x) at x = 3 can be written as f(3)

Exl: Find the derivative function of y = x2 - 3x + 5. Use the derivative to find the slope of the tangent 
and then find the equation of the tangent. r , n / ^ , i ^ i.
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Conditions for the Derivative to Exist
The domain of f' is the set of all points for which the domain of f for which the limit exists. It may be 
smaller than the domain of f.
If f'{x) exists, we say f has a derivative (is differentiable) at x.
A function that is differentiable at every point of its domain is a differentiable function.

4 examples of how f\d) does not exist

1. A comer, where 1 sided derivatives differ, example f(x) =| X

2. A cusp, where the slopes of the secants approach oofrom one side and -°o
2

from the other side, example fix) = X3

3. A vertical tangent, where the slopes of the tangent 
oofrom both sides, example f{x) = yfx

approach <x> or -

4. A discontinuity, where one or both 1-sided limits FAIL to exist, example
J—1,X < 0 
|l,x > 0

What do you notice about the above examples?
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f{x -f- Yi) — y(x)
Using the difference of quotient to find the derivatives f\x) = lim--------------------/j-»0 fa
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