Day 19 Introduction to Derivatives

In the previous sections, we looked at rates of change and were able to determine the slope of a tangent line as the limit of the slopes of secant lines. This amazing result allowed us to calculate instantaneous rates of change of a function at any point. The instantaneous rate of a function is called the *derivative* and the study of derivatives is called *differential calculus*.

Does this definition look familiar? It does since it is the same formula we used in the previous chapter to find the slope of the tangent line; which is what the derivative is.

Notation: The derivative of a function y = f(x) can be denoted by the following symbols:

y' f'(x) $D_x y$ $\frac{dy}{dx}$ $\frac{d}{dx} f(x)$ (Leibniz notation)

Derivative of f(x) at x = 3 can be written as f'(3)

Ex1: Find the derivative function of $y = x^2 - 3x + 5$. Use the derivative to find the slope of the tangent at x=3 and then find the equation of the tangent. $f(x+h)^2 - 3(x+h) + 5$

$$y'_{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = x_{+}^{2} zxh_{+} h^{2} - 3x - 3h + 5$$

$$= \lim_{h \to 0} \frac{x_{+}^{2} + 2xh_{+} h^{2} - 3x - 3h + 5 - (x_{-}^{2} - 3)x + 5)}{h}$$

$$= \lim_{h \to 0} \frac{2xh_{+} h^{2} - 3h}{h}$$

$$= \lim_{h \to 0} \frac{K(2x+h-3)}{h} sub_{h=0} one h canab!$$

$$= 2x-3$$

when $x=3$, $y'(3) = 2(3)-3=3 = m$ $y(3)=3^{2}-3(3)+5=5$
 $y-y_{1} = m(x-x_{1}) = y-5=3(x-3)$
 $y=3x-4$
Page , of

Conditions for the Derivative to Exist

- The domain of f' is the set of all points for which the domain of f for which the limit exists. It may be smaller than the domain of f.
- If f'(x) exists, we say f has a **derivative** (is differentiable) at x.
- A function that is differentiable at every point of its domain is a differentiable function.

4 examples of how f'(a) does not exist

1. A corner, where 1 sided derivatives differ, example f(x) = |x|

2. A cusp, where the slopes of the secants approach ∞ from one side and $-\infty$ from the other side, example $f(x) = x^{\overline{3}}$

3. A vertical tangent, where the slopes of the tangent ∞ from both sides, example $f(x) = \sqrt[3]{x}$

	24		
	y		
			annroach mo
		a a a a a a a a a a a a a a a a a a a	ψ upprouch $\infty 0$
	-6.0		

			y y					
1	•		6. 8					1
· · ·		2	1 0		x	2	3	U
1. 					·			
	h	 and a second	:2.0	+			· · · · · · · · · · · · · · · · · · ·	

4. A discontinuity, where one or both 1-sided limits FAIL to exist, example $f(x) = \begin{cases} -1, x < 0\\ 1, x \ge 0 \end{cases}$

What do you notice about the above examples?

Dand (2) slope from the left does not equal to slope from the right. B vertical trangent Dr. discontinuous (Jump)

of

Using the difference of quotient to find the derivatives $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

1.
$$f(x) = x$$

 $f'(\alpha) = \lim_{h \to 0} \frac{\alpha + h - \alpha}{h}$
 $= \lim_{h \to 0} \frac{h}{h}$
 $= \lim_{h \to 0} \frac{h}{h}$
 $= \lim_{h \to 0} \frac{h}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$
 $= \lim_{h \to 0} \frac{(\alpha + h)^2 - \alpha^2}{h}$

3.
$$f(x) = x^{3}$$

 $f'(x) = \lim_{h \to 0} \frac{(x+h)^{3} - x^{3}}{h}$
 $f'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{3}}{h}$
 $f'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$
 $f'(x) = \frac{1}{k}$
 $f'(x) = \sqrt{x}$
 $f'(x) = \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}$
 $f'(x) = \lim_{h \to 0} \frac{1}{h}$
 $f'(x) = \lim_{h \to 0} \frac{1}{h}$

= lim
$$\frac{x+k-x}{h \ge 0}$$
 h $(\sqrt{x+h}+\sqrt{x})$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \sqrt{x+\sqrt{x}}$$

 $= \frac{1}{2\sqrt{x}}$

 $f'(x) = \lim_{h \to 0} \frac{x_{+h} - x}{h}$ $= \lim_{h \to 0} \frac{x_{-} (x_{+h})}{(x_{+h})(x)} = h$ $h \to 0 \quad (x_{+h})(x)$ $= \lim_{h \to 0} \frac{x_{-} - x_{-h}}{(x_{+h})(x)(x)(h)}$ $= -\frac{1}{x_{-}}$

Summ	ary:		× -						
у	X	x2	\propto^3	24	JEC	1/2			
y'	1	22	322	$4x^3$	1/2.50	-1/22			
					1000				

Page of