Day 1: Introduction to Derivatives

In the previous sections, we looked at rates of change and were able to determine the slope of a tangent line as the limit of the slopes of secant lines. This amazing result allowed us to calculate instantaneous rates of change of a function at any point. The instantaneous rate of a function is called the derivative and the study of derivatives is called differential calculus.

Definition: Derivative

The derivative of a function f w.r.t. (with respect to) the variable x is the function f° whose value at x is:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { provided the limit exits }
$$

[$f^{\prime}(x)$ is pronounced " f prime of x^{\prime}]

Does this definition look familiar? It does since it is the same formula we used in the previous chapter to find the slope of the tangent line; which is what the derivative is.

Notation: The derivative of a function $y=f(x)$ can be denoted by the following symbols:

$$
y^{\prime} \quad f^{\prime}(x) \quad D_{x} y \quad \frac{d y}{d x} \quad \frac{d}{d x} f(x) \quad \text { (Leibniz notation) }
$$

Derivative of $f(x)$ at $x=3$ can be written as $f^{\prime}(3)$
Ext: Find the derivative function of $y=x^{2}-3 x+5$. Use the derivative to find the slope of the tangent at $x=3$ and then find the equation of the tangent.

$$
\begin{aligned}
f(x+h) & =(x+h)^{2}-3(x+h)+5 \\
& =x^{2}+2 x h+h^{2}-3 x-3 h+5
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=x^{2}+2 x h+h^{2}-3 x-3 h+5 \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3 x-3 h+5-\left(x^{2}-3 x+5\right)}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{k(2 x+h-3)}{k} \quad \text { sub } h=0 \text { once } h \text { canal! }
$$

$$
=2 x-3
$$

when $x=3, y\left((3)=2(3)-3=3=n \quad y(3)=3^{2}-3(3)+5=5\right.$

$$
y-y_{1}=m\left(x-x_{1}\right) \Rightarrow \frac{y-5=3(x-3)}{y=3 x-4} \quad \quad \quad \text { Page : of }
$$

Conditions for the Derivative to Exist

- The domain of f^{\prime} is the set of all points for which the domain of f for which the limit exists. It may be smaller than the domain of f.
- If $f^{\prime}(x)$ exists, we say f has a derivative (is differentiable) at x.
- A function that is differentiable at every point of its domain is a differentiable function.

4 examples of how $f^{\prime}(a)$ does not exist

1. A comer, where 1 sided derivatives differ, example $f(x)=|x|$

2. A cusp, where the slopes of the secants approach ∞ from one side and $-\infty$ from the other side, example $f(x)=x^{\frac{2}{3}}$
3. A vertical tangent, where the slopes of the tangent ∞ from both sides, example $f(x)=\sqrt[3]{x}$

approach oo or -

4. A discontinuity, where one or both 1 -sided limits FAIL to exist, example $f(x)=\left\{\begin{array}{l}-1, x<0 \\ 1, x \geq 0\end{array}\right.$

What do you notice about the above examples?
(1) and (2) slope from the left does not equal to slope from the right
(3) vertical tangent
(4) : i. discontinuous (Jump)

Page of

Using the difference of quotient to find the derivatives $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

1. $f(x)=x$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{x+h-x}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =1
\end{aligned}
$$

3. $f(x)=x^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.(x+h-6)(x+h)^{2}+(x+h)(x)+x^{2}\right)}{h} \\
& =(x+0)^{2}+(x+0)(x)+x^{2} \\
& =3 x^{2}
\end{aligned}
$$

5. $f(x)=\sqrt{x}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}=\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
&=\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
&=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}} \\
&=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Summary:

y	x	x^{2}	x^{3}	x^{4}	\sqrt{x}	$1 / x$
y^{\prime}	1	$2 x$	$3 x^{2}$	$4 x^{3}$	$1 / 2 \sqrt{x}$	$-1 / x^{2}$

