Day 7: 1.2 Rates of Change and Slope of a Curve
In some applications what is important is the effect of the change in one variable on a second variable.
Eg. How does a change in price affect sales?
How does a change in time affect position?

$$
A_{R C}=\frac{f(b)-f(a)}{b-a} \quad \text { if } a \leq x \leq b
$$

Independent vs. dependent variables
INVESTIGATION:
The volume of a sphere is related to its radius by the formula:

$$
V=\frac{4}{3} \pi r^{3}
$$

A spherical balloon is being inflated. Find
a) the average rate of change of the volume with respect to the radius within the period of $2 \mathrm{~cm} \leq r \leq 6 \mathrm{~cm}$.

$$
A R Q C=\frac{\frac{4}{3} \pi(6)^{3}-\frac{4}{3} \pi(2)^{3}}{6-2} \Rightarrow \frac{\Delta v}{\Delta r}
$$

- The average rate

$$
=\frac{871.27}{4}
$$ of change is

$$
217.82 \mathrm{~cm}^{3} / \mathrm{r}
$$

$$
=217.82 \mathrm{~cm}^{3} / \mathrm{r}
$$

b) the rate of change when the radius is 10 cm .

$$
\begin{gathered}
10 \leq r \leq 10.001 \\
1 R 0 C=\frac{\frac{4}{3} \pi(10.001)^{3}-\frac{4}{3} \pi(10)^{3}}{0.001} \\
=1256.76 \mathrm{~cm}^{3} / r
\end{gathered}=
$$

E For 1 cm increase in radius, Volume increases by

$$
=\lim _{h \rightarrow 0} \frac{\frac{4}{3} \pi\left[\left((0+h)^{3}-10^{3}\right]\right.}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{4}{3} \pi\left[(10+h-10)\left((10+h)^{2}+(10+h)(0)+10^{2}\right]\right.}{h}
$$

$$
t \frac{4}{3} \pi(300)=400 \pi=1256.76 \mathrm{~cm}^{3} / \mathrm{r}
$$

Average Rate of Change between two points (slope of the secant)

$$
\text { Ave } R o C=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Instantaneous Rate of Change at a point $x=a$

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example 1: The total cost, in dollars, of manufacturing $x$ calculators is given by $C(x)=10 \sqrt{x}+1000$
a. What is the total cost of manufacturing 100 calculators?

$$
\begin{aligned}
C(1 \infty) & =10 \sqrt{10 x+1000} \\
& =10(10)+1000 \\
& =\$ 1100
\end{aligned}
$$

b. What is the rate of change in the total cost with respect to the number of calculators, $x$, being produced when $x=100$ ?

$$
\begin{aligned}
& I R O=\lim _{h \rightarrow 0} \frac{e(100+h)-C(100)}{h} \\
& =\lim _{\lim \frac{10 \sqrt{100 t h}+1000-(10 \sqrt{100}+1000}{} \rightarrow \text { (1000-1000 }}^{h} \text { canclo! } \\
& =\lim _{h \rightarrow 0} \frac{10 \sqrt{100+h}-100}{h} \cdot \frac{10 \sqrt{100+h}+100}{10 \sqrt{100+h}+100} \rightarrow \text { Dintrence of } \text { Squares. } \\
& =\lim _{h \rightarrow 0} \frac{100(\sqrt{100+h})^{2}-(100)^{2}}{h(10 \sqrt{100+h}+100)} \\
& =\lim _{h \rightarrow 0} \frac{100(100+h)-100^{2}}{h(10 \sqrt{100+h}+100)} \\
& =\lim _{h \rightarrow 0} \frac{100^{2}+100 h-100^{3}}{h(10 \sqrt{100+h}+100)}=\lim _{h \rightarrow 0} \frac{100 h}{h(10 \sqrt{100+h}+100)} \\
& =\frac{100}{10 \sqrt{100+0}+100}=\frac{100}{100+100}=\frac{100}{200}=\frac{1}{2}
\end{aligned}
$$

$\therefore$ IROC at $x=100$ is $\$ 0.50 / c a l c a l a t o r$. (It means if the company were fo produce one more cakulator from $x=100$ to iol, the cost coll go up by $\$ 0.50$ )

Example 2: A ball is dropped from the top of the CN Tower.

$$
s(t)=-4-9 t^{2}
$$

The position $s$ (in metres) of the ball is given by the equation: $s=-4.9 t^{2}$ where $t$ is the time in seconds.
(a) Find the average velocity of the ball over the time period of $3 \leq t \leq 7$.

$$
\begin{aligned}
& A R O C=\frac{S(7)-5(3)}{7-3} \\
& =\frac{-4.9(7)^{2}-\left(-4.9(3)^{2}\right)}{4}=\frac{-196}{4}=-49 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Find the velocity of the ball at $t=4$.


$$
V(4)=\lim _{h \rightarrow 0} \frac{s(4+h)-s(4)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-4.9[(4+h+4)(4+h-4)]}{h}
$$

$$
=-4.9[(4+0+4)(1)]
$$

$$
=-4.9(8)
$$

$$
=-39.2 \mathrm{~m} / \mathrm{s}
$$

The velocity of an object with position function $s(t)$ at a time $t=a$ is

$$
v(a)=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

Example 3:
The position function of a moving object is $s(t)=8 t^{2}+16 t$ where $s$ is in $k m$ and $t$ is in hours. $0 \leq t \leq 5$.
a) Find the average velocity during the time interval of $t=2$ to $t=5$.

$$
\begin{aligned}
\operatorname{IROC}=\frac{S(5)-S(0)}{5-0} & =\frac{\left[8(5)^{2}+16(5)\right]-\left[8(0)^{2}+16(0)\right]}{5} \\
& =\frac{8(25)+80}{5}=\frac{280}{5}=56 \mathrm{~km} / \mathrm{howr}
\end{aligned}
$$

b) Find the instantaneous velocity at $t=2$.


$$
V(2)=\lim _{\lim } \frac{s(2+h)-S(2)}{h} \text { a ser the grep }
$$

$$
\begin{aligned}
& s(2+h)=8(2+h)^{2}+16(2+h) \\
& =8\left(4+4 h+h^{2}\right)+32+16 h \\
& =32+32 h+8 h^{2}+32+16 h \\
& =8 h^{2}+46 h+64 \\
& s(2)=8(2)^{2}+16(2) \\
& =32+32 \\
& =64
\end{aligned}
$$

