Day 3: 1.3 Limit of a Function

In mathematics, the function describes how two quantities are related. Calculus is concerned with HOW a change in one quantity is related or dependent upon a change in the other.

Example 1

What happens to the value of a function, $f(x)$, as x gets closer and closer to a particular value, $x=a$?
Given the graph of $f(x)=x^{2}+1$ examine what the value of $f(x)$ approaches (from both sides of the function) when:

$x=1$	from the left $=2$	from the right $=2$
$x=2$	from the left $=5$	from the right $=5$
$x=3$	from the left $=10$	from the right $=10$

Example 2

For each of the graphs below, examine what the value of $f(a)$
 approaches (from both sides of the function).
From the left $=L \quad$ From the left $=L \quad$ From the left $=7$
From the right $=L \quad$ From the right $=L \quad$ From the right $=3$.

(a)

(b)

(c)

The Limit of a Function

The notation: $\quad \lim _{x \rightarrow a} f(x)=L$
What it means: the limit of $f(x)$ as \times approaches a is L (as \times approaches a from either side).

Important!

We are looking for the limit of $f(x)$ as x approaches a, which is not necessarily the value of $f(a)$. A good example of when the limit does not equal $f(a)$ is example $2 b$.

$$
\text { In 2b, } L \neq f(a)
$$

One-Sided Limits

Left-hand Limit: $\quad \lim _{x \rightarrow a^{-}} f(x)$ denotes the limit approaching a from the left side
Right-hand Limit: $\quad \lim _{x \rightarrow a^{+}} f(x)$ denotes the limit approaching a from the right side

Two-sided limits (just called the limit)

$\lim _{x \rightarrow a} f(x)$ denotes the limit approaching a from both sides

The Existence of a limit

A function $f(x)$ has a limit as x approaches a if and only if the right-hand and left-hand limits at a exist and are equal.

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{+}} f(x)=L \text { and } \lim _{x \rightarrow a^{-}} f(x)=L
$$

(iff = if and only if, in symbols it is represented by \Leftrightarrow)

What is the difference between if and tiff?
A pie is on the table. Sophie will eat the pie if it is a blueberry pie. (If the pie is pumpkin will Sophie eat it? Maybe, we don't know).
A pie is on the table. Sophie will eat the pie jiff it is a blueberry pie (If the pie is pumpkin will Sophie eat it? Nope).

Example 3:

$$
f(x)=\left\{\begin{array}{r}
x-1, \text { if } x<1 \\
1, \text { if } x=1 \\
2+\sqrt{x-1,} \text { if } x>1
\end{array}\right.
$$

Determine if the limit exits:
$\lim _{x \rightarrow 1} f(x)=d \cdot n e$
$\lim f(x)=2$ $x \rightarrow 1$
$\lim f(x)=0$
$x \rightarrow 1$
$\lim f(x)$ dine $\sin c e \quad \lim _{x \rightarrow 1^{+}} f(x) \neq \lim _{x \rightarrow 1^{-}} f(x)$ $x \rightarrow 1$

Example 4: Determine if the limit exists:

$\lim _{x \rightarrow 1} f(x)=3$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=d \cdot R \cdot e \\
& L^{+}=\infty \\
& L^{-}=-\infty
\end{aligned}
$$

Example 5: Determine the following.
a) $\lim _{x \rightarrow 1} f(x)=d \cdot n \cdot e$

b) $\quad \lim _{x \rightarrow 0} f(x)=0$

Properties of Limits

For any real number a, suppose that f and g both have limits that exist at $x=a_{0}$

1. $\lim _{x \rightarrow a} k=k$, for any constant k
2. $\lim _{x \rightarrow a} x=a$
3. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow \alpha}[c f(x)]=c\left[\lim _{x \rightarrow a} f(x)\right]$, for any constant c
5. $\lim _{x \rightarrow a}[f(x) g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]$
6. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, provided that $\lim _{x \rightarrow a} g(x) \neq 0$
7. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$, for any rational number n

Example 6: Use a table of values to graph:

$$
f(x)=\frac{x^{2}-4}{x-2}=\frac{(x-2)(x+2)}{(x-2)}=x+2
$$

x	y
-3	-1
-2	8
-1	1
0	2
1	3
2	4
3	5

$$
\text { hole at }(2,4)
$$

But what if we really needed to know the value of $f(x)$ as $x \rightarrow 2$

Example \%: Sketch the graph of any function that satisfies the given conditions.
i) $f(3)=2$
ii) $\lim _{x \rightarrow 3^{-}} f(x)=2$
iii) $\lim _{x \rightarrow 3^{+}} f(x)=4$
iv) $\lim _{x \rightarrow \infty} f(x)=0$
\rightarrow HA is $y=0$

For Limit Properties, see the table on page 35 of the textbook.
Example Determine (dire 4 Substitution).
a) $\lim _{x \rightarrow-1} 5=5$
b) $\quad \lim _{x \rightarrow-\frac{5}{2}}(-x+2) \leq-\left(-\frac{5}{2}\right)+2=\frac{5}{2}+2=\frac{9}{2}$
c) $\lim _{x \rightarrow 3}-\sqrt{x+3}=-\sqrt{3+3}$

$$
=-\sqrt{6}
$$

e) $\quad \lim _{x \rightarrow 2}\left(x^{3}-x^{2}-4\right)$

$$
\begin{aligned}
& =2^{3}-2^{2}-4 \\
& =8-8 \\
& =0
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
& \lim _{x \rightarrow 4} x^{2}+2 x-1 \\
= & 4^{2}+2(4) \\
= & 24-1 \\
= & 23
\end{aligned}
$$

g) $\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2}$

$$
=\frac{2^{2}+2(2)+4}{2+2}-\frac{12}{4}=3
$$

i) $\lim _{x \rightarrow \pi} \sin (x)$
$\leq \operatorname{Sin}(\pi)$

$$
\lim _{x \rightarrow-\frac{1}{3}} \sqrt{3 x+1}=0 \quad \lim _{x \rightarrow \frac{1}{3}} \sqrt{3 x+1}=d n e
$$

j) $\lim _{x \rightarrow-\frac{1}{3}} \sqrt{3 x+1}=d \cdot n-b$ (not kenned)

Example 9.: Let $g(x)=A x+B$, where A and B are constants. If $\lim _{x \rightarrow 1} g(x)=-2$ and $\lim _{x \rightarrow-1} g(x)=4$, find the values of A and B.

$$
\left.\begin{array}{rl}
\\
\lim _{x \rightarrow 1}(A x+B)=-2 \Rightarrow A+B & =-2 \\
\lim (A x+B)=4 \Rightarrow-A+B & =4
\end{array}\right\}
$$

