Day 2: 5.1 Derivatives of Exponential Functions $y = e^x$

INVESTIGATION

Let try to find the derivative of an exponential function $y = b^x$

By definition
$$y' = \lim_{h \to 0} \frac{b^{x+h} - b^x}{h} = \lim_{h \to 0} \frac{b^x (b^h - 1)}{h} = (b^x) \lim_{h \to 0} \frac{b^h - 1}{h}$$

Any value of b such that $y' = b^x$?

that means
$$\lim_{h\to 0} \frac{b^{h-1}}{h} = 1$$

The value is "e", a special irrational number, like the number π . It is called the **natural number**, or Euler's number in honour of the Swiss mathematician Leonhard Euler (pronounced "oiler"), who lived from 1707 to 1783. We use a rational approximation for e of about 2.718.

The value of e is calculated as:

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}}$$
 $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ $e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$

These are called the Fundamental Limit, a famous limit in Calculus.

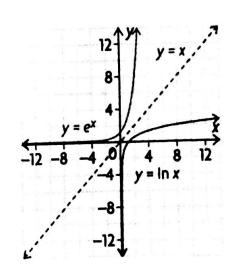
The function $y = e^x$

Since $y = e^x$ is an exponential function, it has the same properties as other exponential functions you have studied.

Recall that the logarithm function is the inverse of the exponential function.

For example, $y = log_2x$ is the inverse of y = 2x

The function $y = e^x$ also has an inverse, $y = \log_e x$. Their graphs are reflections in the line y = x. The function $y = \log_e x$ can be written as $y = \ln x$ and is called the <u>natural logarithm function</u>.



Locate the ex and the ln(x) button on your calculator

Properties of $y = e^x$ and y = lnx

$y = e^x$ The domain is $\{x \in \mathbb{R}\}.$	$y = \ln x$
The range is $\{y \in \mathbb{R} y > 0\}$.	• The domain is $\{x \in \mathbb{R} \mid x > 0\}$.
The function passes through $(0, 1)$.	 The range is {y∈R}.
$e^{\ln x} = x, x > 0.$	 The function passes through (1,
The line $y = 0$ is the horizontal asymptote.	• $\ln e^x = x, x \in \mathbb{R}$.
	 The line x = 0 is the vertical asymptote.

Derivative of $f(x) = e^x$

$$f(x) = e^x, \qquad f(x) = e^x.$$

Note: $y = e^x$ is the one and the only one function that its derivative is itself!

Derivative of composite functions involving e^{x}

if
$$f(x) = e^{g(x)}$$
 then $f'(x) = e^{g(x)}g'(x)$

Example1: Differentiate

a)
$$y = -3e^{x}$$

b)
$$f(x) = e^{x^2 - 2x + 1}$$

c)
$$g(x) = \frac{e^x}{a}$$

b)
$$f(x) = e^{x^2 - 2x + 1}$$

 $f'(x) = (2x - 2)e$
 $c) g(x) = \frac{e^x}{x^2}$
 $g'(x) = e^{x^2 - 2x + 1}$
 $g'(x) = e^{x^2 - 2x + 1}$
 $g'(x) = e^{x^2 - 2x + 1}$
 $g'(x) = e^{x^2 - 2x + 1}$

Example 2: Differentiate then determine f'(1) of $f(x) = e^{x^2} + 3e^{-x}$

$$=\frac{xe^{x}(x-2)}{x^{4}}=\frac{e^{x}(x-2)}{x^{3}}$$

$$f'(x) = e^{x^2}(-1)$$

$$f(i) = e^{i^{2}}z(i) + 3e^{-i}(-1)$$

$$= 2e - 3e^{-1}$$

$$= 2e - \frac{3}{e}$$

Example 3: Find the equation of the tangent line to the curve
$$y = 1 + xe^{2x}$$
 at $x = 0$
 $y' = 0 + 1e^{2x} + xe^{-(x)}(2)$
 $y' = 1 + xe^{2x}$
 $y' = 0 + 1e^{2x} + xe^{-(x)}(2)$

Example 4: Find the point(s) at which the tangent to the curve $y = xe^{x}$ is horizontal.

 $y' = 1e^{x} + xe^{x} + xe^{$