RECALL: FUTURE VALUE
Use to find the value at the end of an annuity (after all deposits are made \& interest is accrued)

$$
A=\frac{R\left[(1+i)^{n}-1\right]}{i}
$$

RECALL: PRESENT VALUE
Use to find the money needed at the beginning of an annuity to provide regular annuity payments

$$
\underline{P V}=\frac{R\left[1-(1+i)^{-n}\right]}{i}
$$

of an Annuity
When we know the future value or the present value of annuity, we can rearrange the formula to ISOLATE R to solve for the regular payment. Remember, rearranging formulas means you do BEDMAS backwards

EXAMPLE 1 Determining Payments given the Amount (Future Value) Brianne wants to save $\$ 6000 \mathrm{f} r$ a trip she plans to take in 5 years. What regular deposit should she make at the end of every 6 months
into an account that earns 6% per year compounded semi-annually?

$$
\begin{gathered}
A=\frac{R\left[(6+i)^{n}-1\right]}{i} \\
6000=R\left[(1+0.03)^{10}-1\right] \\
\frac{6000}{}=R\left(\frac{103}{11.4699}\right. \\
R=\frac{6000}{1.4639}=523.38
\end{gathered}
$$

$$
\begin{aligned}
& A=6000 \\
& R=? \\
& i=\frac{0.06}{2}=0.03 \\
& n=5 y \times \frac{\text { his }}{y}=10 \mathrm{tmes} \\
&
\end{aligned}
$$

\therefore The regular payment

$$
\text { Branle must make } 158
$$

EXAMPLE 2 Determining Payments Given the Present Value 4523.38 Donald borrow $\$ 1200$ from an electronics store to buy a computer. He will repay the loan in equal monthly payments over 3 years, starting 1 month from now. He is charged interest at 12.5% per year compounded monthly. How much is Donald's monthly payment?

$$
\begin{aligned}
& P V=\frac{R\left[1-(1+i)^{-n}\right]}{i} \\
& P V=\$ 1200 \\
& R=? \\
& i=\frac{0.125}{12}=0.0104 \\
& n=3 y \mathrm{rs} \times 12 \frac{\mathrm{~h}_{\text {mes }}}{y^{2}}=36
\end{aligned}
$$

$$
\begin{aligned}
& 1200=\frac{R[1-(1+0.064)]}{0.0104} \\
& 1200=R(29.9607) \\
& \frac{1200}{29900}=R \quad \therefore \text { Donald } \\
& \begin{array}{l}
29.9007 \\
R=40.13 \text { monthly }{ }^{2} \text { payment }
\end{array} \\
& R=40.13 \quad 15 \$ 40.13
\end{aligned}
$$

EXAMPLE 3 Comparing Loan Options
Sheri borrows $\$ 9500$ to buy a car. She can repay her loan in 2 ways.

- Option A: 36 monthly payments at 6.9% per year compounded monthly
- Option B: 60 monthly payments at 8.9% per year compounded monthly

a) What is Sheri's monthly payment for each option?

$$
P V=\frac{R\left[1-(1+i)^{n}\right]}{i}
$$

Option A

$$
\begin{aligned}
i & =\frac{0.069}{12} \\
& =0.00575 \\
n & =36
\end{aligned}
$$

$$
9500=\frac{R\left[1-(1+0.00575)^{-36}\right]}{0.00575}
$$

$$
9500=R(32.43)
$$

$$
\frac{9500}{32.43}=R
$$

$$
\begin{aligned}
& 2.4=k \\
& R=\frac{*}{2} 29.93
\end{aligned}
$$

Option B

$$
\begin{aligned}
i & =\frac{0.084}{12} \\
& =0.00741 \\
n & =60
\end{aligned}
$$

$$
9500=R \frac{\left[1-(1+0.00741)^{-60}\right]}{0.00441}
$$

$$
9500=R(48.295)
$$

$$
\begin{aligned}
& \frac{9500}{48.295}=R \\
&=19
\end{aligned}
$$

$$
\begin{aligned}
& 95=K \\
& R=196.71
\end{aligned}
$$

b) How much interest does Sheri pay for each option?

Ophon 1: 36 months $\times \$ 292.93=10545.48$ Interest $=\$ 10545.48-9500=\$ 1045.48$.
Option 2: 60 months $\times \$ 196.71=\$ 11802.60$

$$
\text { Interest }=\$ 11802.60-9500=\$ 2302.60
$$

c) Give a reason why Sheri might choose each option.

- In option A you pay over $\$ 1000$ less overall. - In upton B you pay less money per month.

Practice: Page 430 1, 3, 4bd, 6 - 9

