Lesson 6.5 The Amount and Present Value of an Annuity

Goal: Calculate the amount (future value) of a simple ordinary annuity
Calculate the present value of a simple ordinary annuity

- An annuity is a series of equal payments paid in to out of an account at regular intervals
- In an ordinary simple annuity, payments are made at the end of each compounding period
- The AMOUNT of an annuity (future value) is the sum of regular deposits plus interest

Compound Periods (\# times per year)
 Weekly: 52 Quarterly: Bi-weekly:

${ }^{R}=$ Payment (per compounding period)
This formula can only be used when helpayment interval is the same as tie compounding period

Example Suppose $\$ 450$ were deposited at the end of each quarter for 1.5 years into an annuity that earns 10% per year compounded quarterly
a) What is the amount of the annuity?

$$
\begin{aligned}
& A=? \\
& R=\$ 450 \\
& i=\frac{0.10}{4}=0.025 \\
& n=4 \times 1.5=6
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{R\left[(1+i)^{n}-1\right]}{i} \\
& =\frac{\left.450 \Gamma^{6}(1+0.025)^{6}-1\right]}{0.025} \\
& =2874.48
\end{aligned}
$$

\therefore The annuity is worth $\$ 2874.48$ in 1.5 years
The INTEREST of an ordinary simple annuity is given by the formula $\boldsymbol{I}=\boldsymbol{A}-\boldsymbol{R} \boldsymbol{n}$, where \boldsymbol{I} is interest amount
b) How much interest did the annuity earn?

We deposited $\$ 450 \times 6=\$ 2700$ The account has \$2874.48.

$$
\begin{aligned}
& \therefore \text { Interest }=\$ 2874.48-\$ 2700 \\
&=\$ 174.48 \\
& \therefore \text { The annuity earned } \$ 174.48 .
\end{aligned}
$$

The present value of an annuity is the principal that must be invested TODAY to provide regular payments

The PRESENT VALUE of an ordinary simple annuity is given by the formula $\underset{-}{V}=\frac{R\left[1-(1+i)^{-n}\right]}{i}$, where $P V=$ Present value (amanda $=$ interest rate (per invested today) (compounding period) $R=$ Payments (per $n=$ number of Compounding
This formula can only be used when the payment interval is ibesmf ate y e compounding period

Example
Victor wants to withdraw $\$ 700$ at the end of each month for 8 months, starting 1 month from now. His bank account earn 5.4% per year compounded montniv,
a) How much must Victor deposit in his account TODAY to pay for the withdrawals?

$$
\begin{aligned}
& P V=? \\
& R=\$ 700 \\
& i=\frac{0.054}{12}=0.0045 \\
& n=\$
\end{aligned}
$$

$$
\begin{aligned}
P V & =\frac{700\left[1-(1+0.0045)^{-8}\right]}{0.004 .5} \\
& =5488.28
\end{aligned}
$$

\therefore Victor must deposit $\$ 5488.28$

The INTEREST of an ordinary simple annuity is given by the formula $\boldsymbol{I}=\boldsymbol{R} \boldsymbol{n}-\boldsymbol{P} \boldsymbol{V}$, where \boldsymbol{I} is interest
b) How much interest did the annuity earn?

Victor will withdraw $\$ 700 \times 8=\$ 5600$. Victor deposited $\$ 5488.28$

$$
\begin{aligned}
& \text { Victor deposited } \$ 5488.28 \\
& \text { Interest }=\$ 5600-\$ 5488.28=\$ / 11.72
\end{aligned}
$$

Practice:
Page 415 \#bs, bc, 7bc, 9
Page 423 \#2ab, 4ad, 9

