Lesson 5.8 Rational Exponents
Goal: Explore the meaning of rational exponents
$\underline{\text { ACTIVITY - Exploring } a^{\frac{1}{n}}}$
Examine the entries in the tables below. Determine the pattern to complete the next entries in each table.

Exponent 2	Exponent -2	Exponent $\frac{1}{2}$
$1^{2}=1$	$1^{-2}=1$	$1^{\frac{1}{2}}=1$
$2^{2}=4$	$2^{-2}=\frac{1}{4}$	$4^{\frac{1}{2}}=2$
$3^{2}=9$	$3^{-2}=\frac{1}{9}$	$9^{\frac{1}{2}}=3$
$4^{2}=16$	$4^{-2}=\frac{1}{16}$	$16^{\frac{1}{2}}=4$
$5^{2}=25$	$5^{-2}=\frac{1}{25}$	$25^{1 / 2}=5$
$6^{2}=36$	$6^{-2}=\frac{1}{36}$	$36^{1 / 2}=6$
$7^{2}=49$	$7^{-2}=\frac{1}{49}$	$49^{1 / 2}=7$

Exponent 3	Exponent -3	Exponent $\frac{1}{3}$
$1^{3}=1$	$1^{-3}=1$	$1^{\frac{1}{3}}=1$
$2^{3}=8$	$2^{-3}=\frac{1}{8}$	$8^{\frac{1}{3}}=2$
$3^{3}=27$	$3^{-3}=\frac{1}{27}$	$27^{\frac{1}{3}}=3$
$4^{3}=64$	$4^{-3}=\frac{1}{64}$	$64^{\frac{1}{3}}=4$
$5^{3}=125$	$5^{-3}=\frac{1}{125}$	$125^{1 / 3}=5$
$6^{3}=216$	$6^{-3}=\frac{1}{216}$	$216^{1 / 3}=6$
$7^{3}=343$	$7^{-3}=\frac{1}{34} 3$	$343^{1 / 3}=7$

Compare the entries in the first and second column of each table. Describe the relationship that you see.
The second column is the reciprocal (flip) of the first column. A negative exponent flips the numerator and denominator

Compare the entries in the first and third column. What do you think it means to raise a number to an exponent of $1 / 2$ or $1 / 3$?
Raising a number to $1 / 2$ is the same as square rooting Raising a number to $\frac{1}{3}$ is the same as cube root.

Use your results above to define a formula for

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$ notation

ACTIVITY -Exploring $a^{\frac{m}{n}}$
Examine the entries in the tables below. Use your calculator to complete each table.
To do a fractional (rational) exponent on your calculator you will need to:

- Use exponent button on your calculator (either the $x^{y},\left(y^{x}\right)$, or $(\hat{y}$ button)
- Use brackets around the fraction
- For example: Enter $25^{\frac{3}{2}}$ a $25 \boldsymbol{x}^{y}(\mathbf{3 \div 2}$

$$
\rightarrow 25 \wedge(3 \div 2)
$$

a	$a^{\frac{1}{2}}$	$a^{\left(\frac{3}{2}\right.}$	$a^{\frac{5}{2}}$
1	$\longrightarrow 1$	1	
4	$\rightarrow 8$	32	
9	\rightarrow	243	
16	$\rightarrow 64$	1024	

Compare the entries in the second, third, and fourth columns of each table.

How do the values of $a^{\frac{3}{2}}$ and $a^{\frac{5}{2}}$ relate to the values of $a^{\frac{1}{2}}$?
$a^{\frac{3}{3}}$ is the cube of $a^{\frac{1}{2}}$
$a^{\frac{5}{2}}$ is $a^{\frac{1}{2}}$ raised to the power of 5
How do the values of $a^{\frac{2}{3}}$ and $a^{\frac{5}{3}}$ relate to the values of $a^{\frac{1}{3}}$?
$a^{2 / 3}$ is the square of $a^{\frac{1}{3}}$
$a^{\frac{5}{3}}$ is $a^{\frac{1}{3}}$ raised to the power of 5

Use your results above to define a formula for \square
$a^{\frac{m}{m}}=\sqrt[n]{a^{m}}$

$$
\text { (} n \text { is the root.) }
$$

Summary:
Conditions
$a^{\frac{m}{n}}=\sqrt[n]{a^{m},} \begin{aligned} & m \text { and } n \text { are integers } \\ & n \text { is positive }\end{aligned}$

- Radical means there is a root $\sqrt{ }$ if n is even, $a \geqslant 0$
- Rational means there is an exponent in fraction form

EXAMPLE 1 Rewrite each expression using rational exponents.
a) $\sqrt[2]{25}=25^{\frac{1}{2}}$
b) $\sqrt[3]{-125}$
c) $\sqrt[4]{1.05^{3}}$
$=(-125)^{\frac{1}{3}}$

$$
(1.05)^{\frac{3}{4}}
$$

EXAMPLE 2 Rewrite each expression in radical form and then evaluate.
a) $81^{\frac{1}{2}}=\sqrt{81}$
b) $(-64)^{\frac{1}{3}}=\sqrt{-64}$
c) $32^{\frac{4}{5}}=\sqrt[5]{32^{4}}$
$-q$
$=-4$

EXAMPLE 3 Solve for the unknown variable, x.
a) $x^{4}=16$
b) $\frac{(3}{2}=-27$

$$
\begin{aligned}
& x=\sqrt[4]{16} \\
& x=2
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x^{3}}=-27 \\
& x^{3}=(-27)^{2} \\
& x=\sqrt[3]{(-27)^{2}} \\
& x=(-3)^{2}=9
\end{aligned}
$$

c) $x^{\frac{2}{3}}=64$

$$
\begin{aligned}
\sqrt[3]{x^{2}} & =64 \\
x^{2} & =64 \\
x & =\sqrt{64^{3}} \\
x & =8^{3} \\
x & =512
\end{aligned}
$$

EXAMPLE 4 Under annual compounding, an initial investment of $\$ 700$ grows to $\$ 900$ in 5 years. Determine the annual interest rate, i, using the compound interest formula $A=P(1+i)^{n}$.

$$
\begin{aligned}
A & =P(1+i)^{n} \\
900 & =700(1+i)^{5} \\
\frac{990}{700} & =(1+i)^{5} \\
\frac{9}{7} & =(1+i)^{5} \\
5 \sqrt{\frac{9}{7}} & =1+i
\end{aligned}
$$

Practice: Page 369 \#2bde, 3-5
Page 376 \#3ad, 5cd, 6acf, 9, 10ade, 12b, 13, 14ac

