Lesson 5.7 Laws of Exponents

Goal: Apply exponent laws to simplify and evaluate exponential expressions		
A <i>power</i> is an expression made up of two parts: the _	and the	
$5^4 \rightarrow$ base: exponent:	$7^{-2} \rightarrow \text{base:}$ exponent:	
$(-5)^4 \rightarrow$ base: exponent:	$-5^4 \rightarrow$ base: exponent:	
$x^3 \rightarrow$ base: exponent:	$(3x)^3 \rightarrow base: \ exponent: \$	
Mathematically, a power is the <i>repeated multiplication</i> of the base an "exponent" number of times		
In expanded form 5 ⁴ =	and (-5) ⁴ =	
If the exponent is not shown, its value is For example $x = x$ $2 = 2$		

MULTIPLICATION LAW: When I multiply powers with the SAME base, I ______ the exponents

$$5^5 \times 5^4 =$$
 (2x)(4x²) =

Division Law: When I divide powers with the SAME base, I ______ the exponents

$$(-6)^{10} \div (-6)^{-2} = \frac{3x^4 y^5}{6x^2 y}$$

POWER OF A POWER LAW: When an exponent is raised to another exponent, I ______ exponents

=

$$(3^4)^5 = (-x^3)^7 =$$

POWER OF A PRODUCT OR QUOTIENT LAW: To simplify a power of two (or more) items multiplied and/or divided, I ______ the exponent to each item being multiplied and/or divided

$$\left(-3x^4\right)^3 = \left(\frac{4y^5}{6x^2}\right)^2 =$$

ZERO EXPONENT LAW: ANY base raised to an exponent of 'zero' is equal to ______

$$(3x^2y^{-6})^0 = ((3^2)^4)^0 =$$

NEGATIVE EXPONENT LAW: A	ny base raised to a negative exponent is equal to the	_ of
the base raised to the same	exponent	

$$3x^{-4}y^{-3}z = \left(\frac{1}{5}\right)^{-2} =$$

SUMMARY OF EXPONENT LAWS

$a^m \times a^n =$	$a^m \div a^n =$
$(a^m)^n =$	$a^0 =$
$(ab)^m =$	$a^{-m} =$
$\left(\frac{a}{b}\right)^m =$	$\left(\frac{a}{b}\right)^{-m} =$

To SIMPLIFY means to write expressions with POSITIVE EXPONENTS only

EXAMPLES

First **simplify** each of the following and <u>then</u> **evaluate** for a = 1, b = -2, and c = 3

a)
$$(a^{-2}b)(a^{-3}b^4)$$
 b) $\frac{a^{-4}b^5c^2}{ab^3c}$ c) $(2a^2b)^5$ d) $\frac{25ab}{(5a)^3b^2}$