Lesson 5.7 Laws of Exponents
Goal: Apply exponent laws to simplify and evaluate exponential expressions

A power is an expression made up of two parts: the \qquad base and the exponent

\qquad exponent: -2 $-55^{4} \rightarrow$ base: $\sqrt{5}$ exponent: \qquad $\frac{4}{3}$ $(3 x)^{3} \rightarrow$ base: $3 \times$ exponent: 3
Mathematically, a power is the repeated multiplication of the base an "exponent" number of times In expanded form $5^{4}=5 \times 5 \times 5 \times 5$ and $(-5)^{4}=(-5) \times(-5) \times(-5) \times(-5)$ If the exponent is not shown, its value is \qquad 1 freemme. $x=x^{\prime}$ $2=2^{1}$

Multiplication Law: When I multiply powers with the

$$
5^{5} \times 5^{4}=\square q
$$

SAME base, I $=\frac{a d d}{8 x^{3}}$
DIVIIION LAW: When I divide powers with the SAME base, I subtract the exponents

$$
(-6)^{10} \div(-6)^{-2}=(-6)^{10-(-2)^{12}}=(-6)^{12} \frac{3 x^{4} y^{5}}{6 x^{2} y^{1}}=0.5 x^{2} 4 \text { or } \frac{1}{2} x^{2} y^{4}
$$

Power of a Power Law: When an exponent is raised to another exponent, I multiply exponents

$$
\left(3^{4}\right)^{5}=3^{4 \times 5}=3^{0}\left(-x^{3}\right)^{7}=-x^{21}
$$

Power of a Product or Quotient Law: To simplify a power of two (or more) items multiplied and/or divided, I \qquad the exponent to each item being multiplied and/or divided

$$
\begin{aligned}
\left(-3 x^{4}\right)^{3} & =(-3)^{3}\left(x^{4}\right)^{3} \\
& =-27 x^{12}
\end{aligned} \quad\left(\frac{4 y^{5}}{6 x^{2}}\right)^{2}=\frac{4^{2}\left(y^{5}\right)^{2}}{6^{2}\left(x^{2}\right)^{2}}=\frac{16 y^{10}}{36 x^{4}}=\frac{4 y^{10}}{9 x^{4}}
$$

Zero Exponent Law: ANY base raised to an exponent of 'zero' is equal to one

$$
\left(3 x^{2} y^{-6}\right)^{0}=1 \quad\left(\left(3^{2}\right)^{4}\right)^{0}=1
$$

(fin)

Negative Exponent Law: Any base raised to a negative exponent is equal to the reciprocal of the base raised to the same \qquad positive. exponent

$$
3 \frac{1}{\stackrel{3}{x}^{x^{-4} y^{-3} z}=} \frac{3 z}{x^{4}}
$$

$$
\left(\frac{1)^{2}}{}\right)^{2}\left(\frac{5}{1}\right)^{2}=5^{2}
$$

Page 1 of 2

$$
\frac{a^{-2}}{1}=\frac{1}{a^{2}}
$$

SUMMARY OF EXPONENT LAWS

$$
\begin{array}{ll}
a^{m} \times a^{n}=a^{m+n} & a^{m} \div a^{n}=a^{m-n} \\
\left(a^{m}\right)^{n}=a^{m} & a^{0}=1 \\
(a b)^{m}=a^{m} b m & a^{-m}=\frac{1}{a^{m}} \\
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{m} & \left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m}
\end{array}
$$

To SIMPLIFY means to write expressions with POSITIVE EXPONENTS only

EXAMPLES
First simplify each of the following and then evaluate for $a=1, b=-2$, and $c=3$

$=a^{-5} b^{5}$
$=\frac{1}{a^{5}} b^{5}$
$=\frac{b^{5}}{a^{5}}$ if $a=1$, \quad then,

$$
\begin{aligned}
&=\frac{(-2)^{5}}{(1)^{5}} \frac{(1)^{5}}{=} \\
&=-32(3) \\
&=-32=-32
\end{aligned}
$$

Practice: Page 362 \#1-3 (bef), 4 be, 5 (bdfh), 6, 7b, 8ac, 10, 13

Evaluate:

$$
\begin{aligned}
& \text { valuate: } \\
& =32(1)^{10}(-2)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& =32(-32) \\
& =1024
\end{aligned}
$$

Evaluate:

$$
\begin{aligned}
& =\frac{1}{5(1)^{2}(-2)} \\
& =\frac{1}{-10} \\
& =-1 / 10
\end{aligned}
$$

