Lesson 5.3 Exponential Models

Goal: Apply exponential models to analyze and predict behaviour of real-world situations

Exponential Models

Represent quantities that change at a constant percent rate quantities are multiplied. by a fixed amount at regular intervals.

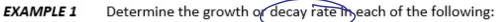
- In a table of values, the <u>arouth</u> / <u>decay</u> factors are equal
- The graph resembles an exponental curve curve
- is the growth/decay factor. Notice that the exponent is the X Value

Growth/Decay Factors

In an exponential equation, $y = ab^x$, the growth/decay factor is given by the value of b

- If b > 1, the relation is <u>INCreasing</u>
- Growth factor = 1 + growth rate
- Growth rate = growth factor 1

- If 0 < b < 1, the relation is decreasina
- Decay factor = 1 decay rate
- Decay rate = 1 decay factor



- a) $A = 500(1.071)^n$ 40 Growth Factor
 - * Growth rale = 0.07 / * Decay cak = 0.08 Which models represent exponential relations?

EXAMPLE 2

IVIPLE 2		VVI	iich models represent exponer
	t	A	
	0	35 _	25 35 - 0.714
	1	25	35-0.77
	2	15 ($\frac{15}{25} = 0.6$
	3	5	$\frac{5}{15} = 0.333$

-	70.2	
)	4 61 1	avenue kal
	10V 3 2	exponental,

d	P	
0	51.2	64 - 105
1	64	$\frac{64}{51.2} = 1.25$
2	80	1.25 64 = 1.25
3	100	$\frac{160}{80} = 1.25$

: Exponental

Growth,

E COLU



a)

: Exponential

- e) $y = 10(2)^{2}$ \times in the exponent
- f) $y = 10x^2$ Exponent 2

.: Exponential.

... Not Exponental Page 1 of 2

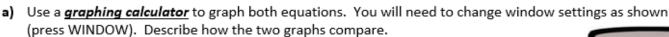
Comparing Pairs of Exponential Relations

Compare the initial value and compare the growth/decay factor

EXAMPLE 3 The equations of two colonies of bacteria are shown below.

Colony A: $P = 100(2)^{\circ}$

Colony B: $P = 100(3)^{t}$



Colony Bincreases at a They sland at the same

b) How would the graph for Colony A change if there were 200 bacteria initially? Point

Do 2000 The

P= 200(2)+

The graph moves up 100 units The rak of increase stays the same Fitting an Exponential Model to Data

We can use <u>EXPUNENTAL</u> <u>YEAVESSI(in</u> to model data that appear lie along an exponential curve and produce a <u>Curve</u> of best fit

EXAMPLE

Year	1921	1931	1941	1951	1961	1971	1981	1991	2001
B.C. Population (millions)	0.52	0.69	0.82	1.17	1.63	2.18	2.82	3.37	4.08

a) Use a graphing calculator to determine the exponential relation $y = ab^x$ that best fits the data above, where x is the number of years since 1921 and y is the population of British Columbia in millions.

 $y = 2.222033 - 16^{23} (1.02718)$

b) What do the values of g and b represent in this situation?

a is the initial value b is the growth rate.

c) Estimate the population of British Columbia in 1985.

x = 1985

 $y = 2.222033.16^{23} (1.02718) = 2.92 \text{ million}$