Lesson 5.2 - Linear and Quadratic Models

Goal: Apply linear models to analyze and predict behaviour of real-world situations

 Apply quadratic models to analyze and predict behaviour of real-world situationsTables, graphs, and equations are all examples of mathematical models
Linear Models
Represent quantities that increase or decrease by a \qquad constant amount over \qquad constant intervals

- In a table of values, the first differences are \qquad
- The graph is a \qquad Straight line
- The equation of the line can be written in the form \qquad where M is the slope and \qquad is the vertical intercept (y -intercept)
- The rate of change is $\frac{r+s e}{r u n}$ or $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

EXAMPLE 1 Which models represent linear relations?
a)

Time (s)	Height (m)
0	60
1	55
2	40
3	15

$55-60=-5$
$40-55=-15$
$15-40=-25$
\therefore Non-Linear

| b) $\begin{array}{c}\text { Time } \\ \text { (h) }\end{array}$ | $\begin{array}{c}\text { Earnings } \\ \text { (\$) }\end{array}$ |
| :---: | :---: | :---: |
| 0 | 0 |
| 5 | 40 |
| 10 | 80 |
| 15 | 120 |

$$
\begin{aligned}
& 40-0=40 \\
& 80-40=40 \\
& 120-80=40 \\
& \text { Linear! }
\end{aligned}
$$

c)

d)

e) $y=2 x+5$
$(y=m x+b) \therefore$ Linear

Analyzing Graphs of Linear Relations

In real world graphs of linear relations:

- The vertical intercept represents the initial Value value of the dependent variable
- The slope represents the rate of change_ in the dependent variable with respect to the independent variable
f) $y=x^{2}+5$ exponent of 2 . \therefore non-linear

EXAMPLE 2 A cup of coffee is reheated in a microwave. The temperature, C degrees Celsius, of the coffee
 after t seconds can be modelled by the following linear equations. Explain what the numbers in the equations represent. How do the two equations compare to each other?
(1) 500 W microwave: $C=0.5 t+20$ (2) 1000 W microwave: $C=t+20$
(1) The cup of coffee is $20^{\circ} \mathrm{C}$ before heating. The microwave heats it $0.5^{\circ} \mathrm{C}$ every second.
(2) The cup of coffee is $20^{\circ} \mathrm{C}$ before heating. The microwave heats it $1^{\circ} \mathrm{C}$ every second.
Compare: The coffees start at the same temperature. The 1000 W microwave heats the coffee twice as fast as the 500 W
Quadratic Models
Represent quantities that are \qquad rion-linear which do not have a \qquad constant rate of change

- In a table of values, the \qquad second differences are equal
- The graph is a curve called a parabola
\qquad and is written in the form
 where \qquad $a \neq 0$
- The equation has a degree of
 microwave. σ

EXAMPLE 3 Which models represent quadratic relations?
(g)
$\left.\begin{array}{c|c|}\hline h & p \\ 0 & 250 \\ \hline 1 & 238 \\ \hline 2 & 202 \\ \hline 3 & 142 \\ \hline\end{array} \begin{array}{c}142-202-250=-12 \\ 202-238=-36 \\ 146-(-12)=-24\end{array}\right]-60-(-36)=-24$
h)
\(\left.\begin{array}{|c|c|}\hline r \& \boldsymbol{Q}

\hline 0 \& 32

\hline 1 \& 48

\hline 2 \& 72\end{array}\right]\)| |
| :---: |
| 3 | 108 \therefore Quadratic

\therefore Not Quadratic
(i)

j)

Not Quadratic (Linear)
(k) $y=x^{6} 47$ degree 2 .
\therefore Quadratic

1) $y=3 x+2 \leftarrow$ degree 1
\therefore Not Quadratic (linear)
Practice: Page 293 \#1-6, 10, 11
