Lesson 5.1 - Rate of Change (Slope)
Goal: Calculate and interpret rates of change from a table and a graph

Rate of Change (ROC): The rate at which something is changing The ROC is often indicated by the \qquad Slope of a graph

We can determine an average rate of change using a table or graph
Table:

Independent Variable (\mathbf{x})	Dependent Variable (\mathbf{y})
X_{1}	$Y /$
X_{2}	Y_{2}

Graph:

Calculating and Interpreting Rates of Change
EXAMPLE 1 Calculate the average rate of change between each pair of points. Explain what the rate of change means.
a) Altitude of an Airplane
b)

Comparing Rates of Change $=\frac{-600}{4}=150$
EXAMPLE 2 The distance required to stop a car depends on the speed at which the car is travelling. Use the tables below (showing the reaction distance and breaking distance needed to stop a car on dry pavement for given speed) to answer the following.
a) Calculate the average rate of change between consecutive points in each table. Describe the rates of change revealed in each table.

Speed $(\mathrm{km} / \mathrm{h})$	Stopping Distance (m)
0	0.0
10	0.5
20	2.0
30	4.5
40	8.0
$2.0-0.5=+1.5$	
$4.5-2.0=+2.5$	
$8.0-4.5=+3.5$	
$12.5-8.0=+4.5$	

*First difference s are constant.
$*$ First difference pie or

* First differences are nut constant. But they increase by the same amount
b) Graph the data in the tables. Describe how the graph reflects the rates of change across the data.

Reaction Distance and Speed

Braking Distance and Speed

\rightarrow Norilmear
(quadratic).

Identifying Rates of Change in a Table and a Graph
EXAMPLE 3 The table below shows the change in height of a tomato plant from germination until the tomato ripens.

Time (was)	Height (cm)
0	0
2	5
4	10
6	20
8	40
10	58
12	75
14	86
16	90
18	90

a) Determine when the rate of change in the height is:
i) Zero: 16-18 wis.
ii) Constant:
$0-4$ bks.
iii) Changing: 4-16 wis. (horizontal line) (strought line) (curve)
b) When is the rate of change in height the greatest?
6-8 weeks (steepest part of graph)
as time increases, height increases
SUMMARY

