Lesson 2.6 - Optimizing Volume and Surface Area
Goal: Determine the optimal volume and surface area for 3-dimensional figures

Optimization: The process of finding the most efficient use of available materials within given constraints.

Key Concepts

1. Among all rectangular prisms with a given surface area, a \qquad CNDO has the maximum volume
2. Among all rectangular prisms with a given volume, a \qquad cub has the minimum surface area

FORMULAS for CUBE
Volume:

$$
V=s^{3}
$$

Surface Area:

$$
S A=6 S^{2}
$$

EXAMPLE 1
What dimensions produce a minimum surface area of a rectangular prism with a volume of $1000 \mathrm{~cm}^{3}$?
Minimize Surface area \Rightarrow Cube.
\qquad $V=1000 \mathrm{~cm}^{2}$
$\begin{aligned} V & =s^{3} \\ 1000 & =s^{3} \\ \sqrt[3]{11(0) U U)} & =s\end{aligned} \quad\left[\begin{array}{rl}s=10 \mathrm{~cm} \\ & \therefore \text { The dimers ions are } \\ 10 \mathrm{~cm} \text { by } 10 \mathrm{~cm} \text { by } 10 \mathrm{~cm} .\end{array}\right.$
What dimensions of a rectangular prism will produce a maximum volume if the surface area is $486 \mathrm{~cm}^{2}$?
max volume \Rightarrow cube.

Optimizing with Restrictions
There may be constraints on the prism you are optimizing.

- The dimensions may have to be whole numbers or be multiples of a given number.
- Sometimes one or more of the sides of the object are missing or bordered by some physical barrier. In these cases, the optimal rectangular prism will not be a cube. You can use diagrams or a table and graph to find the dimensions of the optimal rectangular prism.

EXAMPLE 3

Jacob is designing a glass candle holder. It will he a square-based rec angular prism with outer surface area of $225 \mathrm{~cm}^{2}$, and no top.
Determine the maximum volume of the candle holder to the nearest cm . What are the dimensions of the candle holder?

$$
\mathrm{L} \times L \times H=
$$

$$
\begin{aligned}
& 225=2 l^{2}+4 l b \\
& \frac{225-2 l^{2}}{4 l}=\frac{4 l h}{4 l} \\
& h=\frac{225-2 l^{2}}{4 l}
\end{aligned}
$$

Each cylindrical container has the same surface area.

Without measuring, order these containers from maximum to minimum volume. Explain your reasoning.

Practice: Page 110 \#1-5, 8, 9, 12-16

