Lesson 2.6 – Optimizing Volume and Surface Area

Goal: Determine the optimal volume and surface area for 3-dimensional figures

Optimization: The process of finding the most efficient use of available materials within given constraints.

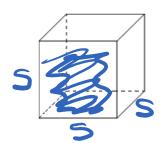
Key Concepts

- 1. Among all rectangular prisms with a given surface area, a _______ has the *maximum* volume
- 2. Among all rectangular prisms with a given volume, a Cube has the *minimum* surface area

FORMULAS for CUBE

Volume:

V=53



Surface Area:

SA=652

EXAMPLE 1

What dimensions produce a minimum surface area of a rectangular prism with a volume of 1000 cm³?

Minimize Surface area => Cube

$$V = 1000 \text{cm}^2$$

$$V = 5$$

$$V = 5$$

... The dimensions are locm by locm by locm.

What dimensions of a rectangular prism will produce a maximum volume if the surface area is 486 cm²?

Max volume => cube.

$$SA = 65^{2}$$
 $486 = 65^{2}$
 $581 = 55^{2}$

MAP4C - Geometry Date:

Optimizing with Restrictions

There may be constraints on the prism you are optimizing.

The dimensions may have to be whole numbers or be multiples of a given number.

• Sometimes one or more of the sides of the object are missing or bordered by some physical barrier.

In these cases, the optimal rectangular prism will not be a cube. You can use diagrams or a table and graph to find the dimensions of the optimal rectangular prism.

EXAMPLE 3

Jacob is designing a glass candle holder. It will be a square-based rectangular prism with outer surface area of 225 cm², and no top.

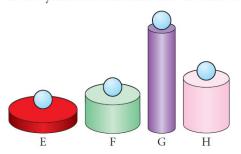
Determine the maximum volume of the candle holder to the nearest cm. What are the dimensions of the

candle holder?

3
5A = 225cm2
SA = 2 lw + 2 lh + 2 wh
Square base: L=W
5A = 21.1 +21h+21h
SA = 2l ² + 4lh
$25 = 21^2 + 416$
25-212 = 41h
41 42
$h = 225 - 21^2$
EXAMPLE 4

EXAN	IPI F	- 4

Each cylindrical container has the same surface area.



Without measuring, order these containers from maximum to minimum volume. Explain your reasoning.

L /	し~日		
Base Side	Height of	Volume	Surface
Length	Prism (cm)	(cm³)	Area (cm²)
(cm)			
1	55.75	55.79	225
2	27.125	108.5	225
3	17.25	155.2	S 225
4	12.062	5)193	225
5	8.75	218.7	\$ 225
6	6.375	229.	225
7	4.536	222,2	64 225
8	3.031		225
9	1.75		225
10	0.625	I	225

Practice: Page 110 #1-5, 8, 9, 12-16