| Name: |  |  |  |   |
|-------|--|--|--|---|
|       |  |  |  | _ |

Date:

## Lesson 2.3 – Working with Composite Objects

Goal: Determine the surface area and volume of composite 3-dimensional objects

Composite object: when a structure or object is make up from several simple objects

Calculating Volume of a Composite Figure

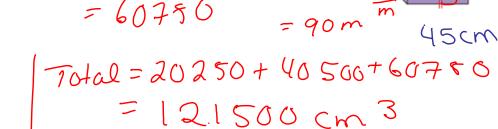
1. Calculate the volume of each part of the composite object

2. Add the volumes

3. Subtract the volume of any parts that are removed from the object

**EXAMPLE** 

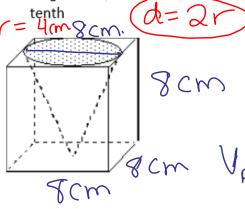
You need to construct a concrete staircase with the dimensions shown.


a) Determine the volume, to two decimal places, of concrete needed.

$$V_1 = 15 \times 15 \times 90$$
  
 $V_2 = 20250 \text{ cm}^3$   
 $V_2 = 15 \times 30 \times 90$   
 $= 40500 \text{ cm}^3$ 

$$V_3 = 25 \times 45 \times 90$$

$$= 60750$$

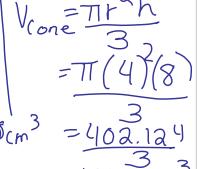

$$= 90 \text{ m}$$



b) Concrete costs \$0.02 per cubic cm. How much will the stairs cost?

$$$0.02/cm^3$$
  
 $(ost=121500cm^3 \times $0.02/cm^3 = $2430$ 

A machinist drilled a conical hole into a cube of metal as shown. If the cube has sides of length 8 cm, what is the volume of the metal after the hole is drilled? Round to the nearest




$$8 cm = 8 \times 8 \times 8 cm$$

$$= 512 cm$$

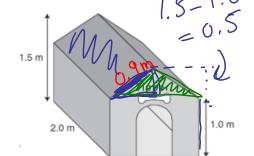
$$= 100 \text{ Me}$$

$$=$$



9 cm  $V_{\text{Final}} = 512 \text{ cm}^3 - 134.0 \text{ cm}^3 = 402.1$ = 378 cm = 134.0

MAP4C


volume of metal 15 378cm

| Name: |  |  |  |  |  |
|-------|--|--|--|--|--|
|       |  |  |  |  |  |

Date:

## Calculating Surface Area of a Composite Figure

- 1. Calculate the surface of each "face" that makes up the composite object
- 2. Add the areas together



1.5 m

## EXAMPLE

- John is making a doghouse for his dog, Tipper.
- a) What is the surface area of the exterior of the doghouse before the doorway is cut? Include the floor.

| Face              | Shape     | Qty | Formula            | Area of each face       |                    |
|-------------------|-----------|-----|--------------------|-------------------------|--------------------|
| Roof panels       | Rectangle | 2   | A=IW               | A = 2.0 m × 0.9m = 1.8m | 2                  |
| Triangular panels | Triangle  | 2   | $A = \frac{bh}{a}$ | A = 1.5m x 0.5m = 0.3   | 37 Sm <sup>2</sup> |
| Front/Back        | Rectangle | 2   | A=lw               | A = 1. Sm x 1. 0m = 1.  | 2W 5               |
| Sides             | Rectangle | 2   | A=lw               | A = 2.0m x 1.0m = 2.0   | $im^2$             |
| Floor             | Rectangle | 1   | A=lw               | A = 1.5m × 2.0m = 3.    | om <sup>′</sup>    |

$$5.5^{2}+0.75^{2}=\chi^{2}$$
  
 $0.8125=\chi^{3}$   
 $\sqrt{0.8125}=\chi$   
 $0.9=\chi$ 

$$0.5^{2}+0.75^{2}=\chi^{2}$$

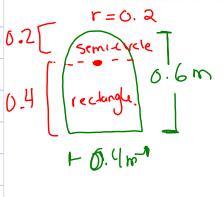
$$0.8125=\chi$$

$$-2(1.8)+2(0.375)+2(1.5)$$

$$+2(2.0)+1(3.0)$$

$$-3.6+0.75+3+4+3$$

$$0.9=\chi$$


$$=14.35 \text{ m}^{2}$$

$$14.35\text{ m}^{2}$$

$$0.9=\chi$$

$$=14.35\text{ m}^{2}$$

b) The exterior walls and roof of Fido's house are to be painted. A 40-cm wide doorway has been cut as shown. The doorway is 60 cm at its highest point. What is the area to be painted?



$$45 \text{ Cm at its nighest point. What is the area}$$

$$45 \text{ Com} \times \frac{1}{100 \text{ cm}} = 0.60$$

$$45 \text{ Clocm} \times \frac{1}{100 \text{ cm}} = 6.40$$

Adoor = Arectargle + A semicircle  
= 
$$(0.4)(0.4) + t_{1}(0.2)^{2}$$
  
=  $0.16 + 0.0628$   
=  $0.2228 m^{2}$ 

Area to part = Total - Floor - Door = 14.35m2 - 3.0m2 - 0.2228m = 11.12m2