Name: \qquad Date: \qquad

Lesson 1.7 - Applications of Trigonometry

- Learning Goal: I can solve problems involving non-right triangles

The Sine Law can be used when we have a side length opposite a known angle and another side length or angle

- When can we use Cosine Law?
$a^{2}=b^{2}+c^{2}-2 b c \cos A$ $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

7

7

The Cosine Law can be used when we have a contained angle or all three side lengths

Keys to solving word problems

1) Read the problem carefully
2) Sketch a diagram and record your known measurements in the appropriate places.
3) Identify unknown.
4) Use triangle relationships to determine the unknown measures.

Example 1: Lynn and Fred, standing 2000 metres apart, spotted a hot air balloon at angles of elevation of 50° and 70° respectively. The hot air balloon is located between them. What is the distance from Fred directly to the hot air balloon? Show your work.

$$
\begin{aligned}
\theta & =180^{\circ}-50^{\circ}-70^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

$$
\therefore \text { Fred is }
$$

$$
\frac{x}{\sin 50^{\circ}}=\frac{2600 m}{\sin 60^{\circ}}
$$

the hot ain
Galloon.

1769 m away

$$
x \sin 60^{\circ}=2000 \sin 50^{\circ}
$$

$$
x=2000 \sin 50^{\circ}
$$

$$
=1769
$$

\qquad
\qquad

Example 2: A triathlon is an event that has competitors swim, run, and bicycle over a set course. The organizers of a triathlon wish to know the total length of the course and took the measurements shown.
Determine the total length of the course, represented in the diagram by the arrows.

$$
\begin{aligned}
\frac{a}{\sin A} & =\frac{b}{\sin B} \\
\frac{x}{\operatorname{Sin} 13.6^{\circ}} & =\frac{42}{\sin 94.0^{\circ}} \\
x \sin 94.0^{\circ} & =42 \sin 13.6^{6} \\
x & =\frac{42 \sin 13.6^{6}}{\sin 94.0^{\circ}} \\
& =9.9 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total length } & =1.5 \mathrm{~m}+40.5 \mathrm{~km}+9.9 \mathrm{~km} \\
& =51.9 \mathrm{~km}
\end{aligned}
$$

course finish

$$
\begin{aligned}
\theta & =180^{\circ}-72.4^{\circ}-94.6^{6} \\
& =13.6^{\circ}
\end{aligned}
$$

Example 3: Determine lengths a and b

$$
\frac{a}{\sin 54^{\circ}}=\frac{6}{\sin 77^{\circ}}
$$

$8 \mathrm{~cm} \operatorname{a} \sin 77^{\circ}=6 \sin 54^{\circ}$

$$
a=\frac{6 \sin 54^{\circ}}{\sin 77^{\circ}}
$$

$$
a=4.982 \mathrm{~cm}
$$

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
b^{2} & =4.982^{2}+8^{2}-2(4.982)(8) \cos 48^{\circ} \\
b^{2} & =88.8203-53.3377 \\
b^{2} & =35.48256 \\
b & =\sqrt{35.48256} \\
& =5.957 \mathrm{~cm}
\end{aligned}
$$

