Day 9: 6.8 Linear Combinations and **Spanning Sets**

Two non collinear vectors, \vec{u} and \vec{v} can be written as a linear combination $a\vec{u} + b\vec{v}$, where a and bare scalars.

In R2, any two nonzero, non collinear vectors are said to form a spanning set for R2 if every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. The set of vectors $\{\vec{i},\vec{j}\}$ forms a spanning set for R2 since every vector can be written uniquely as a linear combination of these two basis vectors.

Similarly, in R³, $\{\vec{i}, \vec{j}, \vec{k}\}$ are basis vectors that forma spanning set for R³.

Ex 1: Write the vector (3, -5) as a linear combination of the vectors (-1, 2) and (1, 4).

(i)
$$3 = -a + b$$
 7 use substitution or elimination
(i) $3 = -a + b$ 7 use substitution or elimination
(ii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 3 = $-a + b$
(iii) $-5 = 2a + 4b$ 4 = $-a = 17/6$

Ex 2: Determine if each set of vectors is a spanning set for \mathbb{R}^2 .

a = -17/6 a = -17/6Ex 2: Determine if each set of vectors is a spanning set for \mathbb{R}^2 .

a) $\{(1, 3), (-2, -1)\}$ b) $\{(1, 5), (-2, -10)\}$ Yes. They are not $[1, 5] = -\frac{1}{2} [-2, -10]$ collinear or

No. They span

 $\vec{a} \neq +\vec{b}$ (and nonzero)

in No. They span a line in 1R2 NOT 1R2

Alternate Solution to Ex. 2:

Note: Any nonzero, non collinear vectors span R².

a) If we can find a k-value such that k(1,3) = (-2,-1), they are collinear and therefore do not span \mathbb{R}^2 .

$$2k=-2$$
 $3k=-1$
 $k=-\frac{1}{3}$
... No k' Such that $k(1,3)=(-2,-1)$

b)
$$k(1, 5) = (-2, -10)$$

$$k = -2$$
 $5k = -10$

$$k = -2$$

$$k = -2$$

$$k(1,5) = (-2,10)$$

$$here is k such that$$

Any pair of nonzero, noncollinear vectors will span a plane in R³. When two or more points or vectors lie on the same plane, they are said to be <u>coplanar</u>.

Linear Dependency

Three vectors \vec{a} , \vec{b} , and \vec{c} are linear dependent if there exist λ and μ such that $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ Note. In order to be linear dependent the vectors must be coplanar (must belong to the same plan).

Ex 3: Given $\vec{u} = (10, -5, 3)$, $\vec{v} = (8, 2, -1)$. Determine if the given vector lies on the same plane determined by \vec{u} and \vec{v} .

a)
$$\vec{x} = (-4, -16, 9)$$

b)
$$\vec{y} = (1, 5, -12)$$

Now check the
$$2$$
-coordinate.
 $9 = 3a - b$
 $9 \stackrel{?}{=} 3(2) - (-3)$
 $9 \stackrel{\checkmark}{=} 6 + 3$
 $\therefore \stackrel{?}{=} cs on$
the same plane.

$$1 = 10a + 8b$$

$$20 = -20a + 8b$$

$$-19 = 30a$$

$$1 = -19$$

$$\frac{1 + \frac{190}{30} = 8b}{|b = \frac{11}{12}|}$$

check the third equation
$$-12 = 3a - b$$

 $-12 \stackrel{?}{=} 3(-\frac{19}{30}) - (\frac{11}{12})$