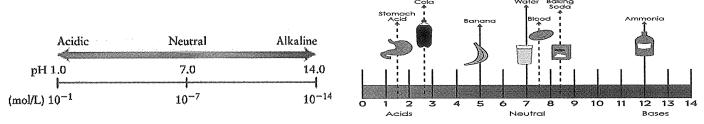

Day 9: 6.5/7.5 – Applications in Physical Sciences


Logarithmic scales are non-linear scales that are used to compare values that have a very large range of values

Acids and Bases: the pH scale

The pH scale measures the acidity or alkalinity of a chemical solution, and is defined as:

 $pH = -\log[H^+]$ where H^+ is the concentration of hydronium ions in moles per litre

pH values typically range from 1 to 14, with pH 7 representing a neutral solution.

EX 1 -

a) Tomato juice has a hydronium ion concentration of approximately 0.0001 mol/L. What is its pH? $pH = -log \Box H^+]$

$$= -\log(0.00001)$$

 $= -(-4) = 4$

b) Orange juice has a pH of approximately 3. What is the concentration of hydronium ions, in orange juice?

$$3 = -109 LH J$$

= -3 = log [H]
H^t = 10⁻³ = 0.001 mok/L

c) Which has a greater concentration of hydronium ions, orange juice or tomato juice, and by how much?

Orange juice has a higher contention of
$$\frac{0.001}{0.0001} = 10 \Rightarrow 10$$
 times higher.

Page | 29

Sound Intensity: the decibel scale

Sound intensity is measured in watts per square metre (W/m^2)

The difference between two sound levels $(\beta_2 - \beta_1)$ is measured in decibels (dB), and is defined as:

$$\beta_2 - \beta_1 = 10 \log \left(\frac{I_2}{I_1}\right)$$

where $\frac{I_2}{I_1}$ is the ratio of the intensities of the two sounds in W/m².

Loud		
Rocket	200	Potentially fatal
Jet engine	160	
Rock concert speaker	150	Pain threshold
Symphony (peak)	120	
Maximum stereo output Niagara Falls Normal city traffic	100 90 85 80	Protective hearing equipme
Shout	80	recommended
Normal conversation	60	
Whisper	30	Barely audible
Rustle of leaves	10 ,	
Quiet		

EX 2 -

a) How many times as intense as a whisper is the sound of a normal conversation?

whisper:
$$\beta_{\mu} = 30$$
 Normal conv: $\beta_{I} = 60$
 $60-30=10 \log (I)$
 $30=10 \log (I)$
 $3=\log I$
 $I = 103 \% 1000$ in 1000 times as more intense.

b) The sound level in normal city traffic is approximately 85 dB. The sound level while riding a snowmobile is about 10 times as intense. What is the sound level while riding a snowmobile, in decibels?

$$B_2 - 85 = 10 [log lo]$$

 $B_2 - 55 = 10$
 $B_2 = 95 dB.$
 $B_3 = 50 cm l level for snow mobile
 $T_5 = 95 dB.$$

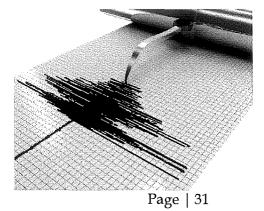
Earthquake Power: the Richter scale

- Earthquakes can vary greatly in intensity from relatively mild to highly destructive.
- The Richter scale using a number called the magnitude, M, to represent the intensity of a given earthquake, I, in comparison to that of a standard low level earthquake, I_0
- The magnitude of an earthquake is defined as:

$$M = \log\left(\frac{I}{I_0}\right)$$

EX 3 -

a) How many times as intense as a standard low-level (magnitude zero) earthquake is an earthquake measuring 4 on the Richter scale?


$$4 = log\left(\frac{1}{10}\right)$$

$$10^{4} = \frac{1}{10}$$

$$= arthquake measuring 4 on
the Richter scale is 100006
the Richter scale is 100006
times more intense.$$

b) What is the magnitude of an earthquake 1000 times as intense as a standard low-level (magnitude zero) earthquake?

$$M = \log (1000)$$
$$= 3$$

