10 Academic Day 9: The Equation of a Circle

Warm-Up: Are You Smarter Than an 8th Grader?

a= <u>Centre</u>

Vadius b =

c= drameter

d= <u>Circumference</u>

e=____chord.

- The <u>radius</u> (r) is the distance from the centre of a circle to a point on the circle.
- All points on the <u>circumference</u> of the circle are equidistant (r units) from the centre.

Task 1: The Circle Formula

On the screen, you should see the following circle.

1. What are the coordinates of the centre of the circle?

$$(\underline{O},\underline{O})$$

In the equation at the top: $(x-h)^2 + (y-k)^2 = r^2$, the value of *h* and *k* are the coordinates of the centre of the circle. In this exercise, our centre will always be (0, 0), so the equation will be in the form: $x^2 + y^2 = r^2$.

e

đ

C

10 Academic				
Day 9: '	Г <mark>he</mark> Eg	uation o	fa	Circle

 $X^2 + y^2 = 4^2$ or 16 2. Write down the equation of this circle shown on the grid . 3. Sketch a circle with radius 6 on the same grid and write the equation here. $\chi^2 + \eta$ =36 4. Sketch a circle on the same grid with radius 2 and write the equation here. X + 4 = 45. What does the 'r' value stand for in the equation? radius 6. What is the radius of a circle with the equation $x^2 + y^2 = 7^2$? <u>radius = 7</u> 7. What would be the equation of a circle with centre (0, 0)X 74 = 25 and radius of 5? single point (0,0) 8. What would happen to the graph of the circle if r = 0?

10 Academic Day 9: The Equation of a Circle

Task 2: Applications

A point lies on the circumference of a circle if the distance between the point and the center of the circle is equal to the radius.

9. Use the formula to determine the equation of a circle with centre (0, 0) if the point (5, 2) is on the circumference.

Substitute the point (5, 2) into the equation for x and y.

Solve the equation for r. $\chi^{2}ty^{2}=r^{2}$ $5^{2}+2^{2}=r^{2}$ Substitute the r back into the formula. $Y^{2}=25t4=29$ $r=\sqrt{29}$ $\chi^{2}+y^{2}=(\sqrt{29})^{2}=0$ $\chi^{2}+y^{2}=29$

10. Point A(2, 4) is on a grid.

- a. If a circle is drawn and point A is INSIDE the circle, what could the equation be? How could you show this by using the circle formula?
- $x^2+y^2=r^2$ if A is inside the circles r^2 must $x^2+y^2=r^2$ be less than 20. $x^2+4^2=r^2$ one equation can be $x^2+y^2=16$

 $Y^{2} = 20$

b. If a circle is drawn and point A is OUTSIDE the circle, what could the equation be? How could you show this by using the circle formula?

$$x^{2}+y^{2}=r^{2}$$
 where $r^{2} > 20$
Bg. $x^{2}+y^{2}=25$.

Day 10 Verifying Properties of Circles

1. The right bisector of a chord of a circle passes through the centre of the circle.

A chord is a line segment whose enpoints are on the circle.

On the circle

- construct a chord
- construct the right bisector of the chord

The right bisector passes through the centre

Example:

A circle has the equation $x^2 + y^2 = 25$. The points A(-3,4) and B(5,0) are endpoints of chord AB. Verify that the centre of the circle lies on the right bisector of chord AB.

Right Bisector: We need to use midponet
and mit

$$M_{AB} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-3 + 5}{2}, \frac{4 + 6}{2}\right)$$

 $= (1, 2)$

$$M_{AB} = \frac{y_2 - y_1}{z_2 - z_1} = \frac{0 - 4}{5 + 3} = \frac{-4}{8} = \frac{-1}{2}$$

$$M_{B} = 2 \quad poid \quad (1, 2)$$

$$y = m(\alpha - z_1) + y_1$$

$$= 2(\alpha - 1) + 2$$

$$= 2 - 2 + 2$$

Centre (0,0) eqn: y=2 <u>Ls Ps</u> <u>y</u> 2x 0 2(0) 0 0 LS=PS <u>(0,0) is on</u> the right bisector.