

Warm-Up:
Are You Smarter Than an $8^{\text {th }}$ Grader?
$\mathrm{a}=$ \qquad centre
$b=$ \qquad $\mathrm{c}=$ diameter $\mathrm{d}=$ Circumferen d $e=$ chord.

- The radius (r) is the distance from the centre of a circle to a point on the circle.
- All points on the circumference of the circle are equidistant (r units) from the centre.

Task 1: The Circle Formula

On the screen, you should see the following circle.

1. What are the coordinates of the centre of the circle?

10 ()

In the equation at the top: $(x-h)^{2}+(y-k)^{2}=r^{2}$, the value of h and k are the coordinates of the centre of the circle. In this exercise, our centre will always be $(0,0)$, so the equation will be in the form: $x^{2}+y^{2}=r^{2}$.

2. Write down the equation of this circle shown on the grid .

$$
x^{2}+y^{2}=4^{2} \text { or } 16
$$

3. Sketch a circle with radius 6 on the same grid and write the equation here. \qquad $x^{2}+y^{2}=36$
4. Sketch a circle on the same grid with radius 2 and write the equation here. \qquad $x^{2}+y^{2}=4$
5. What does the ' r ' value stand for in the equation?
radius
\qquad radius $=7$
6. What is the radius of a circle with the equation $x^{2}+y^{2}=7^{2}$? and radius of 5 ?
7. What would happen to the graph of the circle if $r=0$?

Single point $(0,0)$

Summary: fill in the missing information
Due to the Pythagorean Theorem (and thus the length of a line segment formula as well!), the equation of a circle with centre at $(0,0)$ and radius r is:

$$
x^{2}+y^{2}=r
$$

Task 2: Applications

A point lies on the circumference of a circle if the distance between the point and the center of the circle is equal to the radius.
9. Use the formula to determine the equation of a circle with centre $(0,0)$ if the point $(5,2)$ is on the circumference.

Substitute the point $(5,2)$ into the equation for x and y.
Solve the equation for $r . \quad x^{2}+y^{2}=r^{2}$

$$
5^{2}+2^{2}=r^{2}
$$

Substitute the r back into the formula. $r^{2}=25+4=29$

$$
r=\sqrt{2 q}
$$

$$
\therefore \quad x^{2}+y^{2}=(\sqrt{29})^{2} \Rightarrow x^{2}+y^{2}=29
$$

10. Point $\mathrm{A}(2,4)$ is on a grid.
a. If a circle is drawn and point A is INSIDE the circle, what could the equation be? How could you show this by using the circle formula?
$x^{2}+y^{2}=r^{2} \quad \therefore$ If A is inside the circles r^{2} must $r^{2}=20$
b. If a circle is drawn and point A is OUTSIDE the circle, what could the equation be? How could you show this by using the circle formula?

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \text { where } r^{2}>20 \\
& \text { eg. } x^{2}+y^{2}=25
\end{aligned}
$$

1. The right bisector of a chord of a circle passes through the centre of the circle. A chord is a line segment whose enpoints are on the circle. On the circle

- construct a chord
- construct the right bisector of the chord

The right bisector
passes through the centre

Example:
A circle has the equation $x^{2}+y^{2}=25$. The points $A(-3,4)$ and $B(5,0)$ are endpoints of chord AB .
Verify that the centre of the circle lies on the right bisector of chord AB.
Right Bisector: we need to use midpoint and mt

$$
\begin{aligned}
& M_{A B}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-3+5}{2}, \frac{4+0}{2}\right) \\
& =(1,2) \\
& m_{A B}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-4}{5+3}=\frac{-4}{8}=\frac{-1}{2} \\
& m_{h}=2 \quad \text { port }(1,2) \\
& y=m\left(x-x_{1}\right)+y_{1} \\
& =2(x-1)+2 \\
& =2 x-2+2 \\
& y=2 x
\end{aligned}
$$

Centre $(0,0)$ eq $n: y=2$

LS	RS
Y	$2 x$
0	$2(0)$
0	0
$L S=R S$	

$\therefore(0,0)$ is on the right bisector.

