Day 7: 2.5 Solving Polynomial Inequalities

Recall: An inequality is a mathematical statement that contains one of the following symbols $<, \leq,>, \geq$ or \neq.

Warm-up: Write an inequality that corresponds to the values of x shown on each number line. Note: a solid dot indicates that the value is included in the interval, a hallow dot indicates it is excluded

$$
-2 \leq x \leq 5 \text { OR } x \in[-2,5]
$$

a)

$$
-2 \leq x<5 \quad \text { or } \quad x \in[-2,5)
$$

b)

$$
\begin{array}{r}
x>5 \text { or } x<-2 \text { or } x \in(-5, \infty) \cup \\
(-\infty,-2)
\end{array}
$$

$$
(-\infty,-b)
$$

c)
d)

$$
\begin{aligned}
& x>5 \text { or } x \leq-2 \\
& \text { oR } x \in(-\infty,-2] \cup(5, \infty)
\end{aligned}
$$

When we "solve" an inequality we are finding the values of x that make the inequality true.

Example One - Solve inequalities given a graph
a) Solve $f(x) \leq 0$

$$
x \leq-2 \quad \text { or } \quad 3 \leq x \leq 4
$$

b) Solve $f(x)>0$

$$
-2<x<3 \text { or } x>4
$$

In general, to solve a polynomial inequality algebraically:

1. Gather all terms on LHS and factor the inequality
2. State the zeros
3. Draw an interval table, with the zeros as your intervals
4. Test values within each interval to determine if the solution is $(+)$ or $(-)$
5. Determine whether each interval satisfies the inequality
6. State the solution

Example Two-Solve the following inequality using an interval table: $(x+3)(2 x-3)>0 \quad x=-3, \frac{3}{2}$

	$(-\infty,-3)$	$(-3,3 / 2)$
$x+3$	-	$+3 / 2, \infty)$
$2 x-3$	-	+
$f(x)$	+	$\therefore \in(-\infty,-3) \cup\left(\frac{3}{2}, \infty\right)$

Instead of creating a table, graph or a number line may also be used.
Example Three - Solve the following inequality using an interval table: $5 x^{3}-12 x^{2}-11 x \leq-6$

$$
\begin{aligned}
& \underbrace{5 x^{3}-12 x^{2}-11 x+6}_{p(x)} \leq 0 \Rightarrow \text { FACTOR } \\
& (x-3)\left(5 x^{2}+3 x-2\right) \leq 0 \\
& (x-3)(5 x-2)(x+1) \leq 0 \\
& \underset{-1}{-\quad+\quad+\quad \rightarrow+3}+ \\
& \therefore x \in(-\infty,-1] \cup\left[\frac{2}{5}, 3\right] \\
& \text { included } \sin c e \leq 0 \\
& p(1) \neq 0 \quad P(-1) \neq 0 \\
& p(2) \neq 0 \quad P(-2) \neq 0 \\
& p(3)=0 \Rightarrow x-3 \text { is a factor } \\
& 3\left[\begin{array}{cccc}
5 & -12 & -11 & 6 \\
5 & 15 & 9 & -6 \\
5 & -2 & 0
\end{array}\right. \\
& 5 x^{2}+3 x-2=5 x^{2}+5 x-2 x-2 \\
& =5 x(x+1)-2(x+1) \\
& =(5 x-2)(x+1)
\end{aligned}
$$

Practice Graphical Questions:
Solve the following inequality from the graphs given:
a) $f(x) \leq 0$

$$
x=-1 \text { or } 2 \leq x \leq 4
$$

In interval notion:

$$
x=-1 \text { or } x \in[2,4]
$$

b) $f(x)>0$
$x<-2$ or $-2<x<1$
or $x>3$

$x \in(-\infty,-2) \cup(-2,1) \cup(3, \infty)$

