Day 6: 6.5 Vectors in R² and R³

Points and Vectors in R2:

 R^2 is a coordinate system constructed from two real number lines x and y which are perpendicular to each other and create a two-dimensional plane.

R² is made up of the xy-plane which expands infinitely in all directions.

A point P(a, b) is determined by an ordered pair of real numbers a and b, and has a unique location in the coordinate system.

A vector can be drawn with its tail at O(0,0) and its head at P(a,b) and can be represented in **component form**, $O\vec{P} = (a,b)$, where a is called the <u>x-component</u> and b is called the <u>y-component</u> of $O\vec{P}$. Since O(0,0)and P(a,b) are unique points in the *xy*-plane, the associated vector, \vec{OP} , has a unique location in the xy-plane.

To locate P(a,b), move a units from O(0,0) along the x-axis and b units parallel to the y-axis. Ex: $\overrightarrow{OA} = (2, 3)$

Ex: Write the component form for vectors \overrightarrow{OA} and \overrightarrow{OB}

$$O\overrightarrow{A} = [-2,3]$$
 NOTE: I usually use $[-2,3]$ use $[-2,3]$ use $[-3,-1]$ vectors and $[-3,6]$ for points.

Points and Vectors in R3:

 R^3 is a coordinate system constructed from three real number lines x, y, and z which are all perpendicular to each other and create a three-dimensional system consisting of three two-dimensional planes, xy-plane, xz-plane, and yz-plane.

A point P(a,b,c) is determined by real numbers a,b,c. P(a,b,c) has a unique location in \mathbb{R}^3 and its associated vector $\overrightarrow{OP} = (a,b,c)$ has a unique location.

Note: For $O\vec{P}=(a,b,c)$, a is the x-component, b is the y-component, and c is the z-component.

To locate points in R³ we use a right-handed system.

To locate P(a,b,c), move a units from O(0,0,0) along the x-axis, b units parallel to the y-axis, and c units parallel to the z-axis.

Constructing a rectangular box is often helpful in locating points in R3.

The position vector \overrightarrow{OP} has its tail at O(0,0,0) and its head at P(a,b,c).

Points on the xy-plane are represented by P(x, y, 0) and the equation of the plane is z = 0.

Points on the xz-plane are represented by P(x,0,z) and the equation of the plane is y=0.

Points on the yz-plane are represented by P(0, y, z) and the equation of the plane is x = 0.

Ex: a) In the following diagram, the point P(6, 2, 4) is located in \mathbb{R}^3 . What are the coordinates of A, B, C, D, E, and F? b) Draw the vector OP.

Ex: Given the point P(4,-6,3)

a) Determine the coordinates of the following points:

A(0,-6,3)

B(0,0,3)

C(4,0,3)

D(4,0,0)

E(4,-6,0)

F(0,-6,0)

b) What is the equation of the plane containing the points A, B, C, P?

NOTE: Points A,B,C,P

have one thing in

common. Z=3

: 2=3 is the

equation.

Recall: Equation of a honzontal

Line y=3 means yis 3

x ER.

c) Describe mathematically the set of points contained in

A Z B

x rectangle ABCP.

All points in rectangle ABCP have the form (x,y,3) meaning x,y can be ER but z=3.

- $z \propto \text{EIR} \mid 0 \leq x \leq 4$? $z \propto \text{EIR} \mid -6 \leq y \leq 0$