## Day 5: 7.5 Scalar and Vector Projections

Projections are formed by dropping a perpendicular from the head of one vector to another vector, or an extension of another vector. (Can be thought of as a shadow)

Given two vectors  $\vec{a}$  and  $\vec{b}$ , think of the projection of  $\vec{a}$  on  $\vec{b}$  as the shadow that  $\vec{a}$  casts on  $\vec{b}$ 



Projection of  $\vec{a}$  onto  $\vec{b}$ 



Projection of  $\vec{b}$  onto  $\vec{a}$ 

The direction of the projection of  $\vec{a}$  on  $\vec{b}$  depends on the angle  $\theta$  between  $\vec{a}$  and  $\vec{b}$ 



0≤0<90°





$$\theta = 90^{\circ}$$

## **Calculating Scalar Projections**

The scalar projection of  $\vec{a}$  on  $\vec{b}$  is

The scalar projection of  $\vec{b}$  on  $\vec{a}$  is

In general,



Scalar projection of  $\vec{a}$  on  $\vec{b}$ 



Vector projection of  $\overrightarrow{a}$  on  $\overrightarrow{b}$ 

## Vector Projection of $\vec{a}$ on $\vec{b}$

vector projection of  $\vec{a}$  on  $\vec{b}$ = (scalar projection of  $\vec{a}$  on  $\vec{b}$ ) (unit vector in the direction of  $\vec{b}$ )

$$= \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \left(\frac{\vec{b}}{|\vec{b}|}\right)$$

$$= \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b}$$

$$= \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \vec{b}, \vec{b} \neq \vec{0}$$

**Example1:** Find the scalar and vector projections of  $\vec{u} = (1, 3, 5)$  on  $\vec{v} = (-1, 3, -2)$ .

Scalar projection of 
$$\vec{U}$$
 on  $\vec{V} = \frac{\vec{U} \cdot \vec{V}}{|\vec{V}|}$   

$$= \frac{(1)(-1) + 3(3) + 5(-2)}{\sqrt{(-1)^{2} + (3)^{2} + (-2)^{2}}}$$

$$= \frac{-2}{\sqrt{14}}$$

The angles that a vector  $O\vec{P}$  makes with each positive axis are called <u>direction cosines</u>.

 $\alpha$  is the angle  $O\vec{P}$  makes with the positive x-axis.

 $\beta$  is the angle  $O\vec{P}$  makes with the positive y-axis.

 $\gamma$  is the angle  $O\vec{P}$  makes with the positive z-axis.



## Direction Cosines for $\overrightarrow{OP} = (a, b, c)$

If  $\alpha$ ,  $\beta$ , and  $\gamma$  are the angles that  $\overrightarrow{OP}$  makes with the positive x-axis, y-axis, and z-axis, respectively, then

$$\cos \alpha = \frac{(a, b, c) \cdot (1, 0, 0)}{|\overrightarrow{OP}|} = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$

$$\cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}} \text{ and } \cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

**Example2:** Determine the direction angles for  $\vec{u} = (1, 3, 5)$ .

$$\cos d = \frac{(1,3,5) \cdot (1,0,0)}{\sqrt{1^2 + 3^2 \cdot 5^2}}$$

$$cos d = \frac{1}{\sqrt{35}}$$

$$d = 80^{\circ}$$

$$\beta = 60^{\circ}$$