Day 5: 7.5 Scalar and Vector Projections Projections are formed by dropping a perpendicular from the head of one vector to another vector, or an extension of another vector. (Can be thought of as a shadow) Given two vectors \vec{a} and \vec{b} , think of the projection of \vec{a} on \vec{b} as the shadow that \vec{a} casts on \vec{b} Projection of \vec{a} onto \vec{b} Projection of \vec{b} onto \vec{a} The direction of the projection of \vec{a} on \vec{b} depends on the angle θ between \vec{a} and \vec{b} 0≤0<90° $$\theta = 90^{\circ}$$ ## **Calculating Scalar Projections** The scalar projection of \vec{a} on \vec{b} is The scalar projection of \vec{b} on \vec{a} is In general, Scalar projection of \vec{a} on \vec{b} Vector projection of \overrightarrow{a} on \overrightarrow{b} ## Vector Projection of \vec{a} on \vec{b} vector projection of \vec{a} on \vec{b} = (scalar projection of \vec{a} on \vec{b}) (unit vector in the direction of \vec{b}) $$= \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \left(\frac{\vec{b}}{|\vec{b}|}\right)$$ $$= \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b}$$ $$= \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \vec{b}, \vec{b} \neq \vec{0}$$ **Example1:** Find the scalar and vector projections of $\vec{u} = (1, 3, 5)$ on $\vec{v} = (-1, 3, -2)$. Scalar projection of $$\vec{U}$$ on $\vec{V} = \frac{\vec{U} \cdot \vec{V}}{|\vec{V}|}$ $$= \frac{(1)(-1) + 3(3) + 5(-2)}{\sqrt{(-1)^{2} + (3)^{2} + (-2)^{2}}}$$ $$= \frac{-2}{\sqrt{14}}$$ The angles that a vector $O\vec{P}$ makes with each positive axis are called <u>direction cosines</u>. α is the angle $O\vec{P}$ makes with the positive x-axis. β is the angle $O\vec{P}$ makes with the positive y-axis. γ is the angle $O\vec{P}$ makes with the positive z-axis. ## Direction Cosines for $\overrightarrow{OP} = (a, b, c)$ If α , β , and γ are the angles that \overrightarrow{OP} makes with the positive x-axis, y-axis, and z-axis, respectively, then $$\cos \alpha = \frac{(a, b, c) \cdot (1, 0, 0)}{|\overrightarrow{OP}|} = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$ $$\cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}} \text{ and } \cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$ **Example2:** Determine the direction angles for $\vec{u} = (1, 3, 5)$. $$\cos d = \frac{(1,3,5) \cdot (1,0,0)}{\sqrt{1^2 + 3^2 \cdot 5^2}}$$ $$cos d = \frac{1}{\sqrt{35}}$$ $$d = 80^{\circ}$$ $$\beta = 60^{\circ}$$