2.3 -Solving Polynomial Equations

To solve a polynomial equation, we must determine any values of x that make the equation true.

To do this, write the equation in factored form, then set each factor equal to zero, and solve for

Example One-Solve the following polynomials by factoring

$$
\begin{aligned}
& \text { a) } x^{3}-x^{2}-2 x=0 \\
& x\left(x^{2}-x-2\right)=0 \\
& x(x-2)<x+1)=0 \\
& x=\{-1,0,2\}
\end{aligned}
$$

b) $3 x^{3}+x^{2}-12 x-4=0$
\rightarrow Factor by grouping.

$$
\begin{aligned}
& x^{2}(3 x+1)-4(3 x+1)=0 \\
& \left(x^{2}-4\right)(3 x+1)=0 \\
& (x-2)(x+2)(3 x+1)=0 \\
& \therefore x=\left\{-2,-\frac{1}{3}, 2\right\}
\end{aligned}
$$

Example Two - Solve the following polynomial by using the factor theorem

$$
2 x^{3}+3 x^{2}-11 x-6=0 \quad \frac{b}{a}: \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}
$$

Let $P(x)=2 x^{3}+3 x^{2}-11 x-6$

$$
\begin{array}{ll}
P(x)=2 x+3 x-11 x-6 \\
P(1) \neq 0 \quad P(-1)=-2+3+11-6 \neq 0 & P(2)=16+12-22-6=0 \\
& \Rightarrow x-2 \text { is a factor }
\end{array}
$$

$\Rightarrow x-2$ is a factor

$$
\begin{aligned}
& 2 \left\lvert\, \begin{array}{cccc}
2 & 3 & -11 & -6 \\
\frac{1}{2} & 14 & 6 \\
2 & 3 & 0
\end{array}\right. \\
& \therefore \quad(x-2)\left(2 x^{2}+7 x+3\right)=0 \\
& (x-2)(2 x+1)(x+3)=0 \\
& x=\left\{-3,-\frac{1}{2}, 2\right\}
\end{aligned}
$$

NOTE: If a quadratic does not factor, use Page| 12 quadratic formula.

How are roots, x-intercepts, and zeros related? The key distinction is context:

* If a polynomial equation is factorable, the roots are determined by factoring the polynomial, setting its factors equal to zero, and solving for each factor
* If a polynomial equation is not factorable, the roots can be determined from the graph or the quadratic formula

A polynomial equation may have real and non-real roots
Example Three- Consider the solution to the polynomial equation $x^{3}-3 x^{2}+x-3=0$

* The x-intercepts of the graph correspond to the real roots of the related polynomial equation
$\left.\begin{array}{l}x=3 \text { is the real solution } \\ \text { There are } 2 \text { complex mots. }\end{array}\right\} \begin{aligned} & \text { hence ct } \\ & \text { is a cubic }\end{aligned}$

