2.3 – Solving Polynomial Equations

To **solve a polynomial equation**, we must determine any values of x that make the equation true.

To do this, write the equation in **factored form**, then set each **factor equal to zero**, and **solve for**

Example One- Solve the following polynomials by factoring a) $x^{3} - x^{2} - 2x = 0$ $x(x^{2} - x - 2) = 0$ $x(x^{-2})(x+1) = 0$ $x = \{-1, 0, 2\}$ b) $3x^{3} + x^{2} - 12x - 4 = 0$ $x^{2}(\beta x+1) - 4(3x+1) = 0$ $(x^{2} - 4)(3x+1) = 0$ $(x^{2} - 4)(3x+1) = 0$ (x-2)(x+2)(3x+1) = 0 $\therefore x = \{-2, -\frac{1}{3}, 2\}$

Example Two – Solve the following polynomial by using the factor theorem

 $2x^{3}+3x^{2}-1|x-6=0 \qquad \frac{b}{a}: \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$ Let $P(x) = 2x^{3} + 3x^{2} - 1|x-6$ $P(1) \neq 6 \qquad P(4) = -2 + 3 + 1| - 6 \neq 0$ P(2) = 16 + 12 - 22 - 6 = 0 $=) x-2 \quad \text{is a factor}$ $2 \left(\begin{array}{c} 2 & 3 & -11 & -6 \\ \hline & 4 & 14 & 6 \\ \hline & 2 & 7 & 3 & 0 \end{array}\right)$ $(x-2) \left(2x^{2} + 7x + 3\right) = 0$ $(x-2) \left(2x + 1\right) (x + 3) = 0$ $x = \left\{-3, -\frac{1}{2}, 2\right\}$ NOTE: If α_{1} quadratic oldes not factor, use Page | 12Quadratic formula.

Equation	Sketch of Graph	Roots (of an equation)	Zeros (of a function)	x-intercepts (of a graph)
$y = x^2 - 4$	11	x= {±2}	x = 2 or x = -2	(2,0) or (-2,0)
$y = x^2 + 4$		No Real roots. complex roots: $x = 2 \neq 2i$	NO REAL ZERUS (COMPLEX ZEROS EXIST) X=Zi OIX=-Z	NONE
$y = (x-4)^2$		x= {4} gorder 2	x = 4 order 2	(4,0) order 2

How are roots, x-intercepts, and zeros related? The key distinction is context:

* If a polynomial equation is factorable, the roots are determined by factoring the polynomial, setting its factors equal to zero, and solving for each factor

* If a polynomial equation is not factorable, the roots can be determined from the graph or the quadratic formula

A polynomial equation may have real and non-real roots

Example Three- Consider the solution to the polynomial equation $x^3 - 3x^2 + x - 3 = 0$

* The x-intercepts of the graph correspond to the real roots of the related polynomial equation

$$x=3$$
 is the real solution C hence it
There are 2 complex noots. $\int Is \ a \ cubic$

