Day 5: 1.2-Characteristics of Polynomial Functions

Continued

Key Terms:

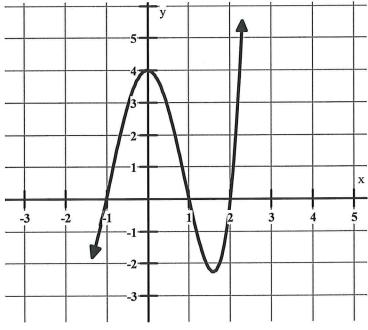
Intervals of Increase - interval(s) where y increases as x increases Intervals of Decrease - interval(s) where y decreases as x increases

Positive Intervals - interval(s) where the function lies above the x-axis Negative Intervals – interval(s) where the function lies below the x-axis

Example One: Answer the questions based on the function below:

a) State the intervals of increase and decrease (using interval notation)

b) State the positive and negative intervals (using interval notation)


c) State the least possible degree of the function.

3

d) State the sign of the leading coefficient of the function.

Positive since @1703

Finite Differences

For a polynomial function of degree n, where n is a positive integer, the n-th differences:

Are equal (or constant)

Have the same sign as the leading coefficient

Are equal to a[(n)(n-1)(n-2)...(2)(1)], where a is the leading coefficient. In other words, an!= n^{th} differences. eg. for quadratic: 2a = 2 and ifferences. Fread as 5 factorial and is equal to 5x4x3x2x1=120 cubic 6a = 3 differences.

Note: 5! is read as 5 factorial and is equal to 5x4x3x2x1=120

Example Two: Use finite differences to determine the following:

х	Y	1st	2 nd	3rd	4 th
		Differences	Differences	Differences	Differences
-2	-54				
-1	-8	-8-(-54)=46			
1	Ü	. (3) (8-46=-38	2-21	
0	0	0-(-8)= 8	6-8= -2	-2+38-36-	12-36=-24
1	6	6-0= 6.	1/ /- 10	10+2=12	12-36=-24 -12-12=-24
	22	22-6=16	11-65 10	-7-10=-12	-12-125-24 -36+12=-24 -68+36=24
2	22	211	14-16= -2	21	-36+12=-24
3	36	36-22=19	-211-1438	-38+2=-36	-68+36=24
4	12	12-36=-24	-24-14	-98t38= -68	
			-122+24=98		1
5	-110	-110-12=-122	-		

a) degree of polynomial

H

b) sign of leading coefficient

negative since 4th differences are negative.

c) value of the leading coefficient:

a(4×3×2×1) = -24 24a=-24

Example Three: For the following polynomial, determine which finite difference is constant and its value

$$f(x)=-2x^4+8x$$

4th differences would be constant

 $a (4x3x2x1) = 4th differences$
 $24(-2) = -48 = 4th differences$

(Value).