Name: \qquad
Date: \qquad

Financial Application Questions

Indicate which formula to use, which variable to solve for, and then solve. Compare with your answers from the TVM solver.

$$
I=\operatorname{Prt} \quad A=P+1 \quad E X=P(1+i)^{n} \quad P V=\frac{A}{(1+i)^{n}} \quad A=\frac{R\left[(1+i)^{n}-1\right]}{i} \quad P V=\frac{R\left[1-(1+i)^{-n}\right]}{i}
$$

1. Jason invests $\$ 500$ in an account that pays interest at a rate of $3.9 \% /$, compounded monthly.
a) How much will he have after 6 years?
b) How long will it take him to have $\$ 1$ 200?

$$
A=P(1+i)^{n}
$$

$i=0.039 \div 12=0.00325$
$=500(1.00324)^{72}$
$=\$ 631.58$
He will have \$1631.50
after 6 yeans.

$$
\begin{aligned}
F V & =p(1+i)^{n} \\
1200 & =500(1.00325)^{n} \\
2.4 & =1-00325^{n} \\
n & =\frac{\log 2.4}{\log 1.00325}=270 \text { months } \\
& =22.5 \text { years. }
\end{aligned}
$$

2. Jolanda wants to save enough money to buy a $\$ 900$ wedding dress in 2 years.
a) If her account pays interest at a rate of
b) What must her interest rate be if she has 2.1\% / a, compounded weekly, how much must $\$ 820$ today?

$$
\begin{array}{ll}
\text { she deposit now? } & i=\frac{0.021}{32}=0.0004038 \\
P V=A(1+c)^{-n} & n=104
\end{array}
$$

$$
F V=p(1+i)^{n}
$$

$$
n=104
$$

$$
900=820(1+i)^{104}
$$

$$
=900(1.0004035)^{-104}
$$

$$
1.09756=(1+i)^{104}
$$

$$
=\$ 862.99
$$

$$
\sqrt[104]{1.09756}=1+i
$$

$$
\begin{aligned}
& .09756=0.0008955 \text { perweek } \times 52 \\
& i=4.66 \%
\end{aligned}
$$

$$
\begin{aligned}
& =0.0008984 .66 \% / \text { year } . \\
& =0.0466 \therefore 4
\end{aligned}
$$

3. John deposits $\$ 300$ every 3 months into an account that pays interest at a rate of $3.3 \% / a$, compounded quarterly.
a) How much will he have after 5 years?

$$
A=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

b) How long will it take him to have $\$ 11000$?

$$
A=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$$
=300\left[1.00825^{20}-1\right] \quad 11000=300\left[\frac{1.00525^{2}-1}{0.00825}\right]
$$

$$
=300\left[\frac{10.00825}{0.00}\right]
$$

$$
=\$ 6494.37
$$

\therefore He will have. \$6494.37 after

$$
5 \text { years. }
$$

$$
\frac{90.75}{30}=\frac{300}{300}\left[1.00825^{n}-1\right]
$$

$$
0.3025=1.00825^{n}-1
$$

$$
1.3025=1.00825^{n}
$$

$$
\begin{aligned}
& 1.3025=1.00525 \\
& n=\frac{1091.9025}{0.75}=32 \text { quarters } \approx \text { years }
\end{aligned}
$$

Name: \qquad \because
Date: \qquad
4. Jane wants to put a $\$ 25000$ down payment on a house 3 years from now.
a) If her account pays interest at a rate of
b) What must her interest rate be if she can $1: 7 \%$ / a, compounded monthly, how much must afford monthly payments of $\$ 600$? she deposit every month?

$$
\because 0,077 \div 12=0,001417
$$

有 67796
5. Jackie is planning to retire with $\$ 500000$ in her account that pays an interest rate of $4.5 \% / \mathrm{a}$, compounded semi-annually.
a) If she wants semi-annual payments for 30 years, how much will she receive every 6 months?
b) If she wants semi-annual payments of $\$ 18000$, how long will she receive payments?

$$
\begin{gathered}
\rho V=\frac{R\left[1-(1+i)^{-n}\right]}{i} \\
500000=\frac{13600\left[1-(1,0225)^{-n}\right]}{0,025} \frac{1}{1,025^{n}}=0,375 \\
11250 \\
180001-1-1,0225^{-n} \\
110225^{-n}=1-0.625 \quad n \log 1.0225=\log 2.6667
\end{gathered}
$$

6. Jorge bought a racing bicycle for $\$ 3500$ and agreed to pay the store back with weekly payments. The store charges him interest at a rate of $11 \% / a$, compounded weekly.

Ez, years
a) If he wants to pay back the store by the end of 2 years, how much must he pay every week?

$$
\begin{aligned}
& p_{V}=\frac{R\left[1-(1+i)^{-N}\right]}{i} ;=0.11 \div 52=0,002115 \\
& 3500=\frac{R\left[1-(1.002115)^{-104}\right]}{n=2652=104} \\
& 3500=R(93.2666) \\
& R=32.53
\end{aligned}
$$

b) If he can only pay $\$ 20$ a week, how long will it take him to pay off his purchase?

$$
\begin{aligned}
& \rho_{V}=\frac{R\left[1-(1+1)^{-n}\right]^{\prime}}{\left.i(1,002115)^{-N}\right]} \\
& 3500=\frac{20[1-(1002115}{0 .}
\end{aligned}
$$

$$
\frac{714}{20}=1-(1,002115)^{-n} \quad 1,002115^{n}=\frac{1}{0,6298}
$$

$$
\therefore 1,002115^{-n}=1-0,37
$$

$$
n \log 1,0021155 \log 1158779^{\circ}
$$

7. Edna deposited $\$ 6000$ in an account that paid simple interest at $7: 5 \% / \mathrm{a}$.
a) If she made no further deposits, how much would she have had in her account after 50 years?

$$
\begin{array}{rlrl}
I_{1} & =P_{r} t & A=P+I & I=P-t \\
& =6000(0.075)(50) & & I=36150-6000 \\
& =22500 & & =30150
\end{array}
$$

b) If the balance is now $\$ 36150$, how long has Edna had her money in this account (assuming no further deposits)?
c) Assume Edna's account paid compound inférest instead, compounded annually. How much additional interest would she have accrued after 50 years?

$$
\begin{aligned}
A & =P(1+i)^{n} \\
& =6000(1.075)^{50} \\
& =223138.48 \\
A & =P+I_{1} 50 \quad I_{2}=223138.48-6000
\end{aligned}
$$

$$
\begin{aligned}
\text { Difference } & =I_{2}-I_{1} \\
& =217138.48-22500 \\
\text { Difference } & =194438.48
\end{aligned}
$$

$$
\begin{aligned}
& 500000=R\left[1-(1.0225)^{-60}\right] \quad \text { A. } 30.2 \cdots \cdots \\
& \begin{array}{c}
500000=\frac{13080\left[1-(1,0225)^{n}\right]}{0,0225} \frac{1}{1,025^{n}}=0.375 \\
\frac{11250}{18000}=1-1,0225^{-n} \quad 1,0225^{n}-2.6667
\end{array} \\
& 5000150=R(32,7490) \\
& R=15262.66 \\
& 1.0225^{n}=1-0.625 \cdots \log 1.0225=\log 2.6607
\end{aligned}
$$

$$
\begin{aligned}
& 500000=R\left[1-(1.0225)^{-60}\right] \quad \text { A. } 30.2 \cdots \cdots \\
& 5000150=R(32,7490) \\
& R=15262.66
\end{aligned}
$$

