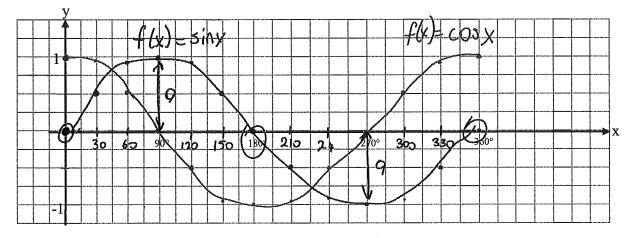
MCR3U1


Day 4: Graphing sin x and cos x

Chapter 5: Trigonometric Ratios

Graphing $f(x) = \sin x$ and $f(x) = \cos x$

Complete the following table of values for $f(x) = \sin x$ and $f(x) = \cos x$ then plot each on the grid below.

x	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
$f(x) = \sin x$	0	0.5	0.87	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87-	-0,5	Ó
$f(x) = \cos x$	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0	0.5	0.87	1

For the sine function:	For the cosine function:
What is the period of the graph? 360	What is the period of the graph? 360
What is the amplitude of the graph? $MQ_{2}-M_{1}$	What is the amplitude of the graph?
What are the x - intercepts? 0, 180, 360	What are the x - intercepts? 90, 270
What is the y - intercept?	What is the y - intercept? (0,1)
What is the axis of the curve? $Mox + min$ y=0	What is the axis of the curve? $y = 0$ b/c $\frac{1+(-1)}{2} = 0$
What are the max and min values? max=1.	What are the max and min values?
What is the domain? What is the range? $D: \{x \in \mathbb{R}\}$ $K' YfK -1 \langle f K' \rangle$	What is the domain? What is the range? $\mathcal{D}: \{x \in \mathcal{D}, \mathcal{R}: \{y \in \mathcal{R} \mid \neg \mathcal{A} \mid \forall \in I\}$
When is the graph increasing?	When is the graph increasing? איס ג ג איס
When is the graph decreasing? $9 < \times 21^{3}$	When is the graph decreasing? O (x < 180
Explain why this graph is a function Passes the VLT, and there's one y	Explain why this graph is a function y values will repeat if we extend part 36
volue to ever x	
INKING : Compare the graphs of $y = \sin x$ and $y = \cos x$	
Dimilorities : The	sine & cosine function are congruent
erlodic Sinu Sinu	sine le cosire function are congruent usoidal curves; the cosire curve is

 $\cos 5K = \sin(x+90)$

same period

some équation of the axis y=0 some amplitude

pg. 364 #12

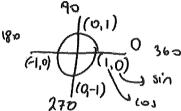
is the sine and translated god to the left.

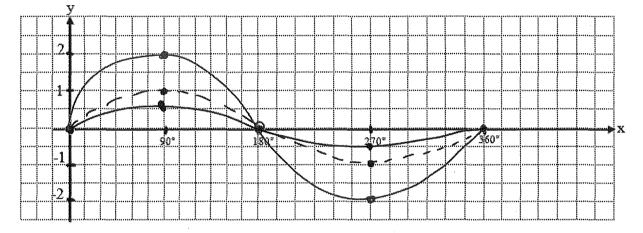
Date:_

Day 5: Transformations of Sinusoidal Functions I

Date:

Chapter 6: Sinusoidal Functions


Stretches of Sinusoidal Functions


f(x) = asin[k(x-d)] + c and f(x) = acos[k(x-d)] + c

Vertical Stretches: Investigating for a

Recall: y = af(x) is the image of y = f(x) under a transformation which causes a **vertical stretch**. **Example 1:** Graph $y = \sin\theta$ and $y = 2\sin\theta$, for $0^{\circ} \le \theta \le 360^{\circ}$.

θ	0.	90*	180°	270*	360*
$y = \sin \theta$	0	1	0	-1	0
$y = 2 \sin \theta$	0	2	0	-2	0

For $y = 2 \sin \theta$,

y coordinate 1. What coordinate is affected?

2. What points are unaffected (invariant)? 0, 180, 360°

3. What is amplitude, a, of the function? Ω

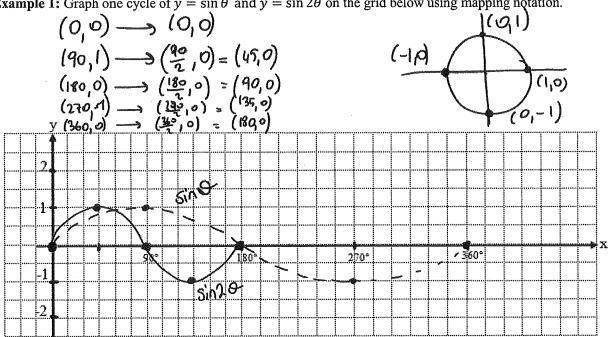
- 4. What is the period? 360
- 5. What is the equation of the axis of the curve? $\frac{\max + \min}{2} = \frac{2 + (-2)}{2} = 0 \quad y = 0$ 6. State the domain and range. $D: \int x \in R^{2} \quad R: \left\{ y \in R \right\} 2 \left\{ y \leq 2 \right\}$

Example 2: Graph $y = \frac{1}{2} \sin \theta$, for $0^{\circ} \le \theta \le 360^{\circ}$ on the above grid.

θ	0°	90*	180°	270°	360°
$y = \frac{1}{2}\sin\theta$	0	0.5	Ø	-0.5	0

SUMMARY, For a > 1, the graph is stretched vertically (expanded) by a factor of a. For $0 \le a \le 1$, the graph is **compressed** vertically by a factor of a. The amplitude of each function $y = a \sin \theta$ and $y = a \cos \theta$ is (a)

a= amplitude


MCR3U1

Day 5: Transformations of Sinusoidal Functions I

Horizontal Stretches: Investigating for k

Recall: y = f(kx) is the image of y = f(x) under a transformation which a causes a horizontal stretch. Mapping: $(x, y) \rightarrow \left(\frac{x}{k}, \gamma\right)$

Example 1: Graph one cycle of $y = \sin \theta$ and $y = \sin 2\theta$ on the grid below using mapping notation.

For
$$y = \sin 2\theta$$
,

1. What coordinate is affected? X

2. What points are unaffected (invariant)? y int.

- 3. What is the amplitude, a, of the function? $\frac{1}{2}$
- 4. What is the period? **180**
- 5. What is the equation of the axis of the curve?

SUMMARY,
Recall: x says something yet does the exact opposite.
for
$$k > 1$$
, the graph is horizontally compressed by a factor of $1/k$
for $0 < k < 1$, the graph is horizontally stretched (expanded) by a factor of $1/k$
The value of k determines the number of degrees in the period of the graph. To determine the period of the
trigonometric function, divide the period of the base curve by k.
 $y = \sin 2\theta$ has period $\frac{360}{k}$ $y = \cos 2\theta$ has period $\frac{360}{k}$
 $e < y = \sin 2\theta$ has period $\frac{360}{k} = 180$

Date: Chapter 6: Sinusoidal Functions

MCR3U1

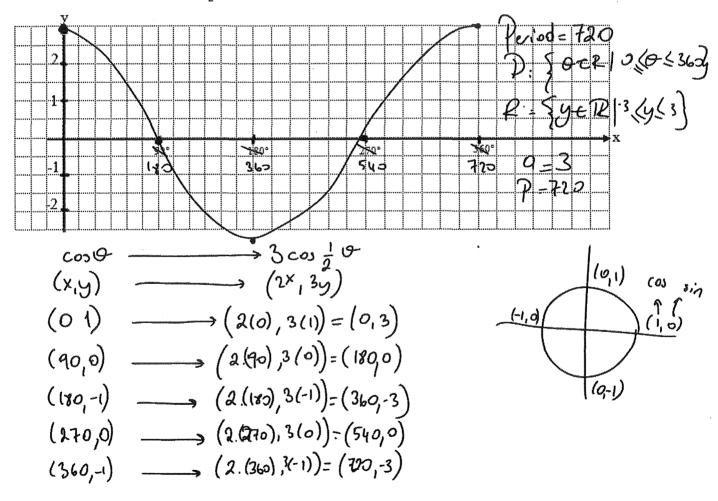
cycle.

Day 5: Transformations of Sinusoidal Functions I

Ex2: $y = \sin 3\theta$ has period:

$$Peniod = \frac{360}{3} = 120^{\circ}$$

Ex3: $y = \sin \frac{1}{3}\theta$ has period:


$$\frac{Period}{\frac{1}{3}} = \frac{360}{3} = \frac{360}{3} \times 3 = \frac{1080^{\circ}}{\frac{1}{3}}$$

Ex4: Determine the equation of the sine function with amplitude 4 and period 45°. State the domain and range of one

$$y = q \sin k \theta \quad Period = \frac{360}{k} \quad 45 = \frac{360}{k} = 2 \quad k = \frac{360}{45} = 8$$

$$y = 4 \sin 80 \quad D = \{0 \in \mathbb{R}\} \quad \mathbb{R} = \{y \in \mathbb{R} \mid -4 \le 4 \le 4\}$$

Ex5: Sketch one cycle of $y = 3\cos\frac{1}{2}\theta$. State the amplitude, period, domain, and range of one cycle of the function.

