Day 3: 1.1-Power Functions

Polynomial Function: a series of terms in which each term is the product of a constant and a power of x that has a whole number as the exponent. Polynomial functions have the form: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, where a is a constant and n is a whole number.

Example One: Which of the following represent polynomial functions?
a) $f(x)=7 x^{3}+5 x^{2}+2$
b) $f(x)=x^{-4}$
c) $g(x)=-\cos x$
not a polynomial
d) $y=8^{x}$
e) $y=-7$
not
a polynomial
polynomial
f) $f(x)=-3 x^{5}$
polynomial

A power function is the simplest type of polynomial function and has the form $y=a x^{n}$ Where x is a variable, a is a real number, and n is a whole number.

Polynomial functions are named based on their degree.

Degree of 0: $y=a \quad 1: y=a x+b, a \neq 0$
$3: y=a x^{3}+b x^{2}+c x+d$
$a \neq 0$

4: $y=a x^{4}+b x^{3}+c x^{2}$
$+d x+e, \quad a \neq 0$

2: $\quad y=a x^{2}+b x+c, a \neq 0$
5: $y=a x^{5}+b x^{4}+c x^{3}+d x^{2}$ +e x+f

Key Terms:

Degree: is the exponent of the greatest power of x
Leading coefficient: is the coefficient of the greatest power of x
Constant Term: a term without a variable

Example Two: State the degree, leading coefficient and constant term for the following:

	Degree	Leading Coefficient	Constant Term
$y=x^{4}-3 x^{2}+6$	4	1	6
$f(x)=3 x^{3}-\frac{5}{2} x^{5}$	5	$-5 / 2$	0
$g(x)=4$	0	4	4

Interval Notation:

In grade 11 you used set notation to describe the domain and range of a function. Interval notation is another way to express this using brackets to represent intervals.

Set Notation	Interval Notation
$\{x \in R \mid-2<x \leq 6\}$	$(-2,6]$

Note:
$>$ Intervals that are infinite are expressed using the infinity symbol (∞) or negative infinity symbol ($-\infty$)
$>$ Square brackets indicate that the end value is included in the interval (Replaces \leq, \geq)
$>$ Round brackets indicate that the end value is not included (Replaces $<,>$)
$>$ Round brackets are always used at positive or negative infinity
Example Three: Rewrite the following in interval notation

$\{x \in R \mid x \leq-1\}$	$(-\infty,-1]$
x is greater than a and less than or equal to b	$[a, b]$
$\{x \in R\}$	$(-\infty, \infty)$

End Behaviour: describes the behavior of the y-values as x increases and as x decreases.
It can be described in two ways:

as $x \rightarrow \infty, y \rightarrow \infty$	OR	Extends from quadrant 2 to quadrant 4
as $x \rightarrow-\infty, y \rightarrow-\infty$		$Q 2 \rightarrow Q 4$

Example Four: State the end behavior of the following functions in two ways.

$\begin{array}{ll} x \rightarrow \infty & y \rightarrow-\infty \\ x \rightarrow-\infty & y \rightarrow-\infty \end{array}$	$\begin{array}{ll} x \rightarrow \infty & y>\infty \\ x \rightarrow-\infty & y>-\infty \end{array}$	$\begin{array}{ll} x \rightarrow \infty & y>\infty \\ x \rightarrow-\infty & y \rightarrow \infty \end{array}$
$Q 3 \rightarrow Q 4$	$Q 1 \rightarrow Q 3$	$Q 1 \rightarrow Q 2$

What can we assume about even-degree functions based on the graphs above?

End behavior	$x \rightarrow \infty$ $y \rightarrow \infty$ or $x \rightarrow \infty$ $x \rightarrow-\infty$ $y \rightarrow \infty$ $y \rightarrow-\infty$ $x \rightarrow-\infty$ $y \rightarrow-\infty$
x - intercepts	Can have 0 -intercept (up to n x-intercepos)
Global maxima/minima	will always have a global max/min dependins on the sign of leading coefficier
Turning points	at least 1 turning point or 3 or $5, \ldots \max -1$

In summary:

Odd-Degree Functions		Even-Degree Functions	
Positive leading coefficient	$\begin{aligned} & x \rightarrow \infty \quad y \rightarrow \infty \\ & x \rightarrow-\infty \quad y \rightarrow-\infty \end{aligned}$	Positive leading coefficient	\uparrow \uparrow $x \rightarrow \infty$ $y \rightarrow \infty$ $y \rightarrow-\infty$ $y \rightarrow \infty$
Negative leading coefficient		Negative leading coefficient	 1 $x \rightarrow \infty$ $y \rightarrow-\infty$ $x \rightarrow-\infty$ $y \rightarrow-\infty$
Number of x intercepts	at least one max n^{\prime} '	Number of x - intercepts	$o(\min) n(\max)$
Number of absolute max/min points	None	Number of absolute max/min points	a bsolute min a>0
			absolute min $a<0$

All polynomial functions with a degree n, will have at most $n-1$ turning points.

