Day 3: 1.1-Power Functions

Polynomial Function: aseries of terms in which each term is the product of a constant and a power of x
that has a whole number as the exponent. Polynomial functions have the form:
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fx)=ax"+a, x"" +a,,x"? +..a;x” +a,x" +a,x+a,, where a is a constant and 7 is a whole number.

Example One: Which of the following represent polynomial functions?

a) f(x)=7x3+5x%+2 b) f(x)=x"* c) g(x) = —cosx
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d) y=8* e) y= -7 f) f(x)= -3x°
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A power function is the simplest type of polynomial function and has the form y = ax™ Where x is a variable,
a is a real number, and n is a whole number.

Polynomial functions are named based on their degree.
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Key Terms:
Degree: is the exponent of the greatest power of x
Leading coefficient: is the coefficient of the greatest power of x
Constant Term: a term without a variable
Example Two: State the degree, leading coefficient and constant term for the following:
Degree Leading Coefficient Constant Term
y=x*—3x>+6 o ( 6
5
— 3 . s , < %)
F0) = Bx 5% 5 S / 5 O
gx) =4 O 7 b’
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Interval Notation:

In grade 11 you used set notation to describe the domain and range of a function. Interval notation is another
way to express this using brackets to represent intervals.

Set Notation ‘ Interval Notation
{xER|—2<x<6) | (-2, 6]

Intervals that are infinite are expressed using the infinity symbol (e0) or negative infinity symbol (—co)
Square brackets indicate that the end value is included in the interval (Replaces <,=)

Round brackets indicate that the end value is not included (Replaces <, >)

Round brackets are always used at positive or negative infinity

Example Three: Rewrite the following in interval notation

{xeR|x £ -1}

(;-co/—'j
(a,b]
éwJ oo )

End Behaviour: describes the behavior of the y-values as x increases and as x decreases.

x is greater than a and less than or equal to b

{x € R}

It can be described in two ways:

asx — oo,y — oo

OR

Extends from quadrant 2 to quadrant 4
asx — —o0o,y = — Q2 — Q4
Example Four: State the end behavior of the foHowmg functions in two ways.
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y=—x*+3x* +3x* -11x+4

What can we assume about even-degree functions based on the graphs above?
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In summary:

Odd-Degree Functions Even-Degree Functions
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Number of x -
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Number of absolute
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None

Number of absolute
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All polynomial functions with a degree n, will have at most

n -\ turning points.
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