Day 3: 1.1-Power Functions

Polynomial Function: a series of terms in which each term is the product of a constant and a power of *x* that has a whole number as the exponent. Polynomial functions have the form:

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, where *a* is a constant and *n* is a whole number.

Example One: Which of the following represent polynomial functions?

- a) $f(x) = 7x^3 + 5x^2 + 2$ Polynomial Not a polynomial Not a polynomial Not a polynomial
- d) $y = 8^{x}$ not a polynomial polynomial $f(x) = -3x^{5}$ polynomial polynomial

A **power function** is the simplest type of polynomial function and has the form $y = ax^n$ Where x is a variable, a is a real number, and n is a whole number.

Polynomial functions are named based on their degree.

Degree of 0:
$$y=a$$

 $3: y=ax^{3}+bx^{2}+cx+d$
 $a\neq 0$
 $4: y=ax^{4}+bx^{3}+cx^{2}$
 $a\neq 0$
 $4: y=ax^{4}+bx^{3}+cx^{2}$
 $a\neq 0$
 $fex + f$
 $fex + f$

Example Two: State the degree, leading coefficient and constant term for the following:

	Degree	Leading Coefficient	Constant Term
$y = x^4 - 3x^2 + 6$	4	(6
$f(x) = 3x^3 - \frac{5}{2}x^5$	5	-5/2	0
g(x)=4	0	4	4

Interval Notation:

In grade 11 you used set notation to describe the domain and range of a function. **Interval notation** is another way to express this using brackets to represent intervals.

Set Notation	Interval Notation
$\{x \in \mathbf{R} \mid -2 < x \le 6\}$	(-2, 6]

Note:

- > Intervals that are infinite are expressed using the infinity symbol (∞) or negative infinity symbol ($-\infty$)
- > Square brackets indicate that the end value is included in the interval (*Replaces* ≤, ≥)
- Round brackets indicate that the end value is not included (*Replaces <*, >)
- > Round brackets are always used at positive or negative infinity

Example Three: Rewrite the following in interval notation

$\{x \in R x \leq -1\}$	(-00,-1]
x is greater than a and less than or equal to b	(a, b]
$\{x \in R\}$	$(-\infty,\infty)$

End Behaviour: describes the behavior of the y-values as x increases and as x decreases.

It can be described in two ways:

$as x \to \infty, y \to \infty$	OR	Extends from quadrant 2 to quadrant 4
as $x \to -\infty, y \to -\infty$		$Q2 \rightarrow Q4$

Example Four: State the end behavior of the following functions in two ways.

хэс уэ-со	×Э∞ УЭ∞	хэсо узоо
хэ-с уэ-со	×Э-∞ УЭ-∞	хэ-со узсо
$Q_3 \rightarrow Q_4$	Q1-7Q3	$Q_1 \rightarrow Q_2$

What can we assume about even-degree functions based on the graphs above?

End behavior	x-100 y-200 x-200 y-2-00
	$x \rightarrow -\infty$ $y \rightarrow \infty$ $x \rightarrow -\infty$ $y \rightarrow -\infty$
x - intercepts	can have O x-intercepts (up to n
Global maxima/minima	will always have a global max/min depending on the sign of leading coefficien
Turning points	at least 1 turning point or 3 or 5, Max n-1

In summary:

Odd-Degree Functions		Even-Degree Functions	
1ª	хэсо цэсо хэ-со цэ-со	Positive leading coefficient	1 1 X700 y-700 X7-10 y-700
A L	X→∞ Y→-∞ X→-∞ Y→∞	Negative leading coefficient	J J X700 Y7-00 J J X7-00 Y7-00
atleast	one max n	Number of <i>x</i> – intercepts	o (min) n (max)
None		Number of absolute max/min points	absolute min a>0 absolute min a20
	gree Functi I I A I L at least None	gree Functions $\downarrow \uparrow x \rightarrow \infty \rightarrow$	gree FunctionsEven-Degree 1 $x \rightarrow \infty$ $y \rightarrow \infty$ 1 $x \rightarrow \infty$ $y \rightarrow \infty$ $x \rightarrow -\infty$ $y \rightarrow -\infty$ Negative leading coefficient 1 $x \rightarrow -\infty$ $y \rightarrow -\infty$ 2 $x \rightarrow -\infty$ $y \rightarrow -\infty$ 1 $x \rightarrow -\infty$ $y \rightarrow -\infty$ 2 $x \rightarrow -\infty$ $y \rightarrow -\infty$ 2 $x \rightarrow -\infty$ $y \rightarrow -\infty$ 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 <

All polynomial functions with a degree n, will have at most n - 1 turning points.