Day 3: 6.2 – Introduction to Logarithms

Warm up – Solve the exponential expression: $8^{2x-1} = 4^{-x-6}$

Recall: Inverse of a Function

- The inverse function f^{-1} of a function f, is found by writing the function in the form y = f(x), exchanging the values of x and y, and then solving for y
- If you are given co-ordinates of a function *f*, the co-ordinates of the inverse function *f*⁻¹ can be found by **interchanging x and y**.

EX1 – a. Graph each exponential function and its' inverse on the same grid.

c. Write the equation for each **inverse** function:

1

_	0 /			
	$y = 2^x$	$x = z^{\mathcal{Y}}$	$y = \left(\frac{1}{2}\right)^x$	$\mathbf{x} = \left(\frac{1}{2}\right)^{\mathbf{x}}$
Domain	$\{x \in R\}$	{x = R x > 0}	$\{x \in R\}$	ZxER1 20703
Range	$\{y \in R \mid y > 0\}$	zyer}	$\left\{ y \in R \mid y > 0 \right\}$	えみとほう
x-intercept	none	1	none	1
y-intercept	1	none	1	nore
Asymptote(s)	y = 0	x = 0	y = 0	x = 0
increasing or decreasing on its domain	Increasing	increasing	decreasing	decreasing

ď	Fill	in	the	fol	lowing	kev	features	of	the	above	graphs	•
ч.	1.111	ш	uic	IOI.	Юw шig	VC A	reatures	U1	uc	above	grapito	٠

The inverse of an exponential function is called a logarithmic function.

The **logarithmic function** is defined by $y = log_b x$, where $b > 0, b \neq 1$

- Read as "y equals to the logarithm of x to the base b" •
- $X = 2^{9}.$ $\log_2 x = y$ Any exponential relationship can be written using logarithm notation •

A *logarithm* is the **power** to which a number **must be raised** in order to get some **other number**. $x = a^{y}$ then $y = \log_{a}(x)$ If Exponent = log base (Value) Value = Base Exponent $\leftarrow \rightarrow$

EX 2 - Rewrite in logarithmic form

a)
$$5^2 = 25$$

 $109_{5^2} = 25 = 2$
 $109_{5^2} = 25 = 2$
 $109_{5^2} = 25 = 2$
 $109_{5^2} = 3$
 $109_{5^2} = 3$

EX 3 – Rewrite in exponential form

a) $\log_6 36 = 2$ b) $\log_{0} 1 = 0$ $6^{2}=36$ 9:01

Common Logarithms

Logarithms to the base 10 are called **common logarithms**.

• When writing a common logarithm, it is not necessary to write the base; that is; log 100 is understand to mean the same as *log*₁₀100

EX 4 – Evaluate a logarithm

a)
$$\log_3(81) = \infty$$

 $3 = 8|$

b) $\log 100 = \infty$
 $10^{5^{\circ}} = 100$

$$x = 4$$
 $x = 2$

c)
$$\log_2(-4) = \infty$$
 d) $\log(0.01) = \infty$

$$2^{2} = -4$$
 $10^{2} = \frac{1}{100}$

>C

$$e) \log_{2}\left(\frac{1}{8}\right) =$$

$$2 = \frac{1}{8}$$

$$\boxed{x = -3}$$

f) $\log_2(10) = \infty$

> = -2

$$2 \stackrel{\sim}{=} 10$$

 $x \stackrel{\circ}{=} 3.32$ [Calculator]