Day 3: 6.2 - Introduction to Logarithms

Warm up - Solve the exponential expression: $8^{2 x-1}=4^{-x-6}$

Recall: Inverse of a Function

- The inverse function f^{-1} of a function f, is found by writing the function in the form $y=$ $f(x)$, exchanging the values of x and y, and then solving for y
- If you are given co-ordinates of a function f, the co-ordinates of the inverse function f^{-1} can be found by interchanging x and y.

EX 1 - a. Graph each exponential function and its' inverse on the same grid.

b. Graph the line $\boldsymbol{y}=\boldsymbol{x}$ on both grids. What do you notice?

$$
f(x) \text { and } f^{-1}(x) \text { are reflected in } y=x \text { line. }
$$

c. Write the equation for each inverse function:

$$
\begin{aligned}
& y=2^{x} \rightarrow \quad x=2^{y} \\
& y=\left(\frac{1}{2}\right)^{x} \rightarrow \quad x=\left(\frac{1}{2}\right)^{y}
\end{aligned}
$$

d. Fill in the following key features of the above graphs:

	$y=2^{x}$	$x=2^{y}$	$y=\left(\frac{1}{2}\right)^{x}$	$x=\left(\frac{1}{2}\right)^{x}$
Domain $\{x \in R\}$	$\{x \in R \mid x>0\}$	$\{x \in R\}$	$\{x \in R \mid x>0\}$	
Range	$\{y \in R \mid y>0\}$	$\{y \in R\}$	$\{y \in R \mid y>0\}$	$\{y \in \mathbb{R}\}$
x-intercept	none	1	none	1
y-intercept	1	$x=0$	1	$n=2 e$
Asymptotes)	$y=0$	increasing	decreasing	decreasing
increasing or decreasing on its domain	Increasing			

The inverse of an exponential function is called a logarithmic function.

$$
x=2^{y}
$$

The logarithmic function is defined by $y=\log _{b} x$, where $b>0, b \neq 1$

- Read as " y equals to the logarithm of x to the base $b^{\prime \prime}$
- Any exponential relationship can be written using logarithm notation

A logarithm is the power to which a number must be raised in order to get some other number.

$$
\text { If } x=a^{y} \text { then } y=\log _{a}(x)
$$

Value $=$ Base ${ }^{\text {Exponent }} \quad \longleftrightarrow$ Exponent $=\log$ base (Value)

EX 2 - Rewrite in logarithmic form
a) $5^{2}=25$
b) $512^{\frac{1}{3}}=8$
$\log _{5} 25=2$

$$
\log _{512} 8=\frac{1}{3}
$$

EX 3 - Rewrite in exponential form
a) $\log _{6} 36=2$
b) $\log _{9} 1=0$
$6^{2}=36$

$$
9^{0}=1
$$

Common Logarithms
Logarithms to the base 10 are called common logarithms.

- When writing a common logarithm, it is not necessary to write the base; that is; $\log 100$ is understand to mean the same as $\log _{10} 100$

EX 4 - Evaluate a logarithm
a) $\log _{3}(81)=x$

$$
3^{x}=81
$$

$$
x=4
$$

c) $\log _{2}(-4)=x$

$$
2^{x}=-4
$$

NOT POSSIBLE
e) $\log _{2}\left(\frac{1}{8}\right)=x$

$$
\begin{aligned}
& 2^{x}=\frac{1}{8} \\
& x=-3
\end{aligned}
$$

b) $\log 100=x$

$$
\begin{aligned}
10^{x} & =100 \\
x & =2
\end{aligned}
$$

d) $\log (0.01)=x$

$$
10^{x}=\frac{1}{100}
$$

$$
x=-2
$$

f) $\log _{2}(10)=x$

$$
\begin{aligned}
& 2^{x}=10 \\
& x \doteq 3.32 \quad \text { [cakulator] }
\end{aligned}
$$

