
(Warm-Up) Task B: The Basic Parabola $y = x^2$

- Complete the table of values, including the first differences.
- 2. Graph the parabola.

$y = x^2$	first
16	differences
9	4-16= 7
Ü	4-9-5
1	1-4=-3
1	0-1=-1
0 /2	1-0=1
1 6	1,-1-7
4 1	9.11.5
9	7-4=7
16	-16-9=7
	$y = x^{2}$ $\begin{vmatrix} 1b \\ 9 \\ 4 \\ 1 \\ 0 \\ 4 \\ 9 \\ 1b \end{vmatrix}$

These are also referred to as the 'step pattern'.

• Go to DESMOS and type $y = (x - h)^2 + k$. Then click all to add slider. Set h and k to 0. Does this graph match the one you drew above?

Task k: What happens when you graph $y = x^2 + k$?

- Change the slider for k to 2. What equation does that produce? $y = x^2 + 2$
- 3. Describe the effect this had on the graph.

It shifted the graph 2 units UP.

4. Complete the following information.

vertex = (0, 2)

axis of symmetry = $\frac{V=0}{1}$

direction of opening = UP

step pattern =

4 3 5 7

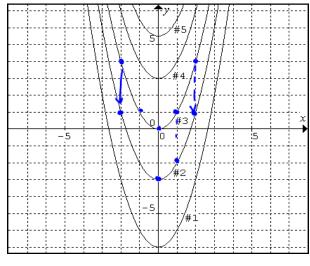
- Change the slider for k to -6. What equation does that produce? $y = x^2 6$
- 5. Describe the effect this had on the graph.

It shifted/translated 6 units Down

6. Complete the following information.

9-1-4-1	x	$y = x^2 - 6$	first diff.
4 6 6	-3	$(-3)^2 - 6 = 3$	<u></u>
4	-2	(-2)2-6=-2	_2
2 x	-1	$(-1)^2 - 6 = -5$	٦,
-8 -6 -4 -2 2 4 6 8	0	(0)2-6=-61/	-1
4	1	(1)2-6=-5)3	2
	2	(2)2-6=-2)	<u> </u>
0	3	13)2-6=3/3	של

 $vertex = (O_1 - 6)$


axis of symmetry = <u>x=0</u>

direction of opening = <u>UP</u>

step pattern =

135

7. State the equation of each graph.

- $y = x^2 7$
- #2: $y = x^2 3$
- #3: $y = x^2$
- #4: $y = x^2 + 3$
- $y = x^2 + 5.5$

The Effect of k

The graph of $y = x^2 + k$ produces a <u>vertical translation (or shift)</u>.

- the parabola will shift $\underline{\mathbf{y}} \mathbf{p}$ if k > 0 (i.e. $y = x^2 + k$)
- the parabola will shift $\sqrt{Q} \ Q \ W \ N$ if k < 0 (i.e. $y = x^2 k$)

Task H: What happens when you graph $y = (x - h)^2$?

- Back in DESMOS; change the slider for k back to 0.
- Change the slider for h to -5. What equation does that produce in vertex form? (HINT: Sub -5 for h)

8. Describe the effect this had on the graph.

The graph shifted/translated 5 units left.
9. Complete the following information:

1	,				_	-		_								
H	+				H	H	0	y								
\Box					1		6									
H'	Ų.			_	/		4									
Ħ	1						2									
	۲		1		\vdash	Н	_	-	Н		Н	\vdash	H	Н	Н	×
	_		_	_	_	-		_	_	_	_	_	_			ш
-8	F	6	-	4	-	2			2		4		6		8	н
-8	-	6	-	4	-	2	2		- 2		-		6		8	н
-8	-	6	-	4	-	2	2		3		-		6		8	н
-8	-	6	-	4	-	2			-		-		6		8	н
-8		6	-	4	-	2	4						6		8	н

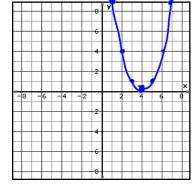
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x	$y = (x+5)^2$	first differences
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-8	(-8+5) ² = 9	unterences
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-7	$(-7+5)^2 = 4$	- 3
$-4 \left(-4+5\right)^{2} = 1$	-6	(-6+5) ² = 1	ر - ا
$-4 \left(-4+5\right)^{2} = 1$	-5	(-5+5)2 - O	7
3	_1	(-145)}	1
-3 (-3+5)= 4) 5	-4	((17) - 1)	3
2 1/21/2 91	-3	(-3+5)=4	5
-2 (-2-T5) = 1	-2	(-2+5)2=9°	•

vertex = (5,0)

axis of symmetry = X = 5

direction of opening = Up

step pattern =

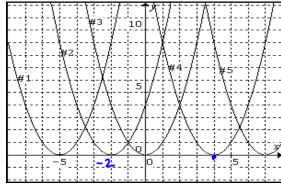

Back in DESMOS; change the slider for h to 4.

What equation does that produce in <u>vertex form</u>? y=(x-4)

10. Describe the effect this had on the graph.

It shifted/translated 4 units RIGHT

11. Complete the following information:


x	$y = (x - 4)^2$	first
1	$(1-4)^2 = 9$	differences
2	(2-4)2= 4	-3
3	$(3-4)^2 = 1$	-3
<i>J</i>		-(
4	(4-4)2 = 0	
5	$(5-4)^2 = 1$	7
6	$(6-4)^2 = 4$	
7	17-12-9	5
/	(1-4) = 7	

vertex = (4/0)axis of symmetry = X = 4

direction of opening = \underline{UP}

step pattern =

12. State the equation of each graph.

#1: $y = (x+5)^{2}$ #2: $y = (x+2)^{2}$ #3: $y = x^{2}$ #4: $y = (x-4)^{2}$ #5: $y = (x-7)^{2}$

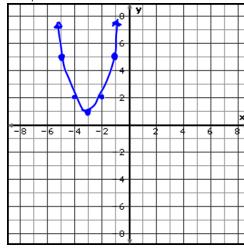
The Effect of h

The graph of $y = (x - h)^2$ produces a <u>horizontal translation (or shift)</u>.

the parabola will shift $\frac{1}{6}$ $\frac{6}{1}$ $\frac{1}{6}$ $\frac{1}{6}$ if $\frac{1}{6}$ > 0

(i.e.
$$y = (x - {}^{+}h)^{2}$$
 or $y = (x - h)^{2}$)

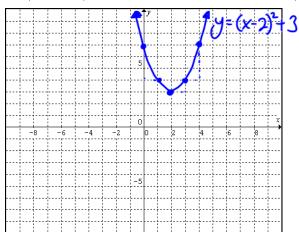
• the parabola will shift $L \to F \to f$ if h < 0


(i.e.
$$y = (x - h)^2$$
 or $y = (x + h)^2$)

Task T: What happens when they're together $y = (x - h)^2 + k$?

Back in DESMOS, change the slider for k to 1 and for h to -3.

What equation does that produce in <u>vertex form</u>? $y = (x+3)^2 + 1$


14. Complete the following information:

axis of symmetry =
$$X = -3$$

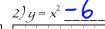
direction of opening =
$$\underline{UP}$$

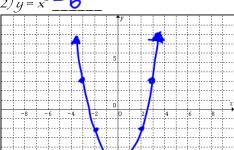
15. Graph the equation $y = (x-2)^2 + 3$ using the step pattern. Vertex (2, 3)

Graphing: Step Pattern

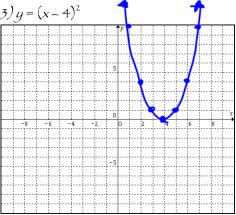
- 1) State the step pattern:
- 2) Plot the vertex
- 3) From vertex, move 1 unit right, then 1 unit up. Plot the point. (This is your first step)
- 4) From the last point, move 1 unit right, then 3 units up. Plot the point. (This is your second step)
- 5) If there is any space left in the Cartesian plane, continue with this pattern.

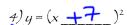
Task P: Practice!

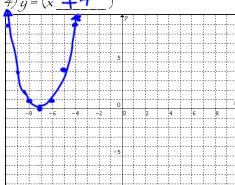

15. Complete the following table.

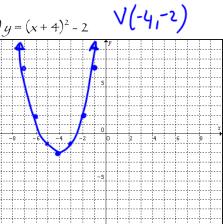

_quation	Vertex	Axis of	Step Pattern	Direction of
1		Symmetry	From Vertex	Opening
$1)y = x^2 + 1$	(91)	X=0	1,3,5	up
2) $y = x^2 - 6$	(0, -6)	メミク	1,3,5	J.P.
3) $y = (x-4)^2$	(4,0)	x=4	1,3,5	ψ
4) $y = (x + 7)^2$	(-7,0)	x = -7	13,5	4P
$5)y = (x+4)^2 - 2$	(-4,-2)	×=-4	1,3,5	UP
6) $y = (x-1)^2 - 3$	(1,-3)	X = 1	1, 3, 5, 7	Up

16. Graph each parabola from the table.









$$5)y = (x+4)^2 - 2$$

6) $y=(x-1)^{2}-3$

