Day 2-Radian Measure
In the past, we have worked exclusively with degrees as our unit of measurement for angles. An alternative measurement system uses radians.

The measure of an angle θ is defined by the length, a, of the arc that subtends the angle divided by the radius of the circle

An angle θ (in radians) is equal to the arc length (a) divided by the radius (\mathbf{r}) of the circle

$$
\theta=\frac{a}{r}
$$

For one complete revolution, the length of the arc equals the circumference of the circle, $2 \pi r$

$$
\theta=\frac{2 \pi r}{r}
$$

One complete revolution $\left(360^{\circ}\right)$ measures 2π radians, therefore $2 \pi=360^{\circ}$ or $\pi=180^{\circ}$

To convert from:
Radians to degrees: Multiply by $\frac{180}{\pi}$ Degrees to radians: multiply by $\frac{\pi}{180 .}$

EX 1 - Convert the following:

$$
\begin{aligned}
& 10^{\circ} \text { to radians } \\
& =(10)\left(\frac{\pi}{180}\right) \\
& =\frac{\pi}{18} \mathrm{rad} \\
& \begin{array}{|l|l|l}
220^{\circ} \text { to radians } & \frac{\pi}{6} \text { to degrees } & \frac{2 \pi}{10} \text { to degrees }
\end{array} \\
& =220\left(\frac{\pi}{180}\right)=\frac{\pi}{6} \cdot \frac{180}{\pi}=\frac{2 \pi}{10}\left(\frac{180}{\pi}\right) \\
& \left.\left|=\frac{22}{18} \pi \quad\right|=30^{\circ} \quad \right\rvert\,=36^{\circ} \quad 0 R \quad 2 \pi \text { is } 360 \\
& =11 \pi / 9 \mathrm{rad} \text {. or } 360 / 10=36^{\circ}
\end{aligned}
$$

EX 2 - Liah chooses a camel to ride on a carousel. The camel is located 9 m from the centre of the carousel. If the carousel turns through an angle of $\frac{5 \pi}{6}$, determine the length of the arc traveled by the camel.

$$
\begin{array}{rlr}
a=? & \\
r=9 & a=r \theta \\
\theta & =\frac{5 \pi}{6} & \\
& & =9\left(\frac{5 \pi}{6}\right) \\
& & =\frac{45 \pi}{9}=5 \pi \text { metres }
\end{array}
$$

As an object rotates, its angular displacement changes with respect to time.
Angular velocity $=\frac{\theta}{t}$

EX 3 - The angular velocity of a rotating object is the rate at which the central angle changes with respect to time. The hard disk in a personal computer rotates at 7200 rpm (revolutions per minute). Determine its angular velocity, in:
a) Degrees per second

$$
\begin{aligned}
& =\frac{(7200)(360)}{60} \\
& =43200 / \mathrm{sec}
\end{aligned}
$$

b) Radians per second

$$
\begin{aligned}
& =\frac{(7200)(2 \pi)}{60} \\
& =240 \pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Trigonometry Essential Skills Review

Recall: $\int_{H}^{o} C_{H}^{A} T_{A}^{o}$	$\cos \theta=\frac{\text { adj }}{\text { hyp }}$	$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$
Primary trig ratios:	$\sin \theta=\frac{\operatorname{lop}}{\text { hyp }}$	$\csc \theta=\frac{1}{\sin \theta}$

Recall:
Angles in standard position:

Skill practice - Rationalizing the denominator:
$\frac{3}{\sqrt{2}}$ has an irrational denominator (root in the denominator).
This is improper form. We rationalize the denominator by:

$$
\frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}
$$

Recall: We can find principal angles given the specified quadrant and related acute angle. We can also measure these rotations in radians with special angles $\frac{\pi}{6}\left(30^{\circ}\right), \frac{\pi}{4}\left(45^{\circ}\right), \frac{\pi}{3}\left(60^{\circ}\right)$.

Practice Questions:

1. Convert the following to radians.
a. 40°
b. $60^{\circ} \cdot \frac{\pi}{180}$
c. 140°
d. 210°
$=40\left(\frac{\pi}{180}\right)=\frac{\pi}{3}$
$=140\left(\frac{\pi}{180}\right)$
$=\frac{210 \pi}{180}$
$=2 \pi / 9 \mathrm{rad}$
$=\frac{7 \pi}{9}$
$=\frac{7 \pi}{6}$
2. Convert the following to degrees
a. $\frac{5 \pi}{6}$
b. $\frac{3 \pi}{4}=3(180)$
$=\frac{5(180)}{6}=150^{\circ}$
$=135^{\circ}$
c. $\frac{7 \pi}{3}$
d. $\frac{11 \pi}{4}$
$=\frac{11(180)}{4}$
$=495^{\circ}$
$=\frac{7(180)}{3}$
$=420^{\circ}$
3. Find each principal angle for the specified quadrant and RAA (related acute angle)
a. $\mathrm{Q} 2: \frac{\pi}{6}$
b. Q3: $\frac{\pi}{4}$
c. $\mathrm{Q} 4: \frac{\pi}{3}$
$\theta=\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \mathrm{rad}$
4. Rationalize each denominator:
a. $\frac{4}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$
b. $\frac{12}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}$

$$
=\frac{4 \sqrt{7}}{7}
$$

$$
=\frac{12 \sqrt{6}}{6}=2 \sqrt{6}
$$

$$
=\frac{8 \sqrt{15}}{3}
$$

Page 16

$$
\begin{aligned}
\theta & =\pi+\frac{\pi}{4} & \theta & =2 \pi-\frac{\pi}{3} \\
& =\frac{5 \pi}{4} \mathrm{rad} & & =\frac{5 \pi}{3}
\end{aligned}
$$

