\qquad

PRESENT VALUE

RECAP

Simple Interest Formula	Compound Interest Formula
$A=P(1+r t)$	$A=p(1+i)^{n}$
$P=\frac{A}{1+r t}$	$P=\frac{A}{(1+i)^{n}}=A(1+i)^{n}$

Another word for... $A=$ Amount is... Final/acumelated/Future value $P=$ Principal is ... deposit/ present value

PRESENT VALUE FORMULA

The compound interest formula $A=P(1+i)^{n}$ can be rearranged to solve for P so that

$$
P=\frac{A}{(1+i)^{n}} \text { or written with a negative exponent } P=A(1+i)^{-n}
$$

EXAMPLE 1: INVESTMENTS

Ravi wants to invest enough money today to have $\$ 500$ for college tuition in two years. If he invests his money at 6% per year, compounded monthly, how much does he need to invest?
$P=$?
$A=5500 \quad P=A(1+i)^{-n}$
$i=\frac{0.06}{12}=0.005 \quad=5500(1.005)^{-24}$
$n=2 \times 12=24=\$ 21879.52$

EXAMPLE 2: LOANS

Suppose you want to borrow $\$ 200$. A creditor will add interest to the principal and then give you a loan for the full amount (interest included). You then make payments until the entire loan is paid off.

Jamie took out a $\$ 3000$ loan, due in four years. If interest is 5.7% per year, compounded semi-annually, how much should Jamie's creditor be willing to accept to pay off the loan today?

$$
\begin{aligned}
& P=? \\
& A=3000 \\
& i=\frac{0,057}{2} \\
& n=4 \times 2 \\
& =8
\end{aligned}
$$

$$
P=3000\left(1+\frac{0.057}{2}\right)^{-8}
$$

PRESENT VALUE PRACTICE

Use the present value formula $P=A(1+i)^{-n}$ fo solve the following problems.

1. A loan of $\$ 5000$, at 12% per year compounded monthly is due to be repaid in 3 years. How much is the present value (principal) of the loan?

$$
\begin{array}{ll}
P=? & P=5000(1.01) \\
A=5000 & =\$ 3494.63 \\
i=\frac{0.12}{12}=0.01 & =\$ 1
\end{array}
$$

$$
n=36
$$

2. How much money must Kerry invest today to have $\$ 4000$ in two years, at 12% per year, compounded quarterly?
$P=$?

$A=4000$

$$
i=0.03
$$

$$
\begin{aligned}
& i=0.03 \\
& n=2 \times 4
\end{aligned} \quad=\$ 3157.64
$$

$$
=8
$$

3. Jenay will invest some money on July 3, her sixteenth birthday, at 4.5 per year, compounded monthly. How much should she invest if she wants to have $\$ 10000$ on the November 3 following her eighteenth birthday?

4. An investment fund pays 6.3% per year, compounded monthly. How much should a 25 -yearold woman invest in the fund to have $\$ 50000$ by age 35 ?

$$
\begin{array}{ll}
p= & p=50000(1+0.00525)^{-120} \\
A=50000 & =26673.51 \\
i=0.00525 &
\end{array}
$$

\qquad

Compare Compounding Periods

5. Suppose you need $\$ 5000$ in 4 years. How much money do you need to invest at 6.5% per year if the investment is compounded:
a) Yearly
$P=$
$A=5000$

$$
\begin{aligned}
p & =5000(1+0.065)^{-4} \\
& =3886.62
\end{aligned}
$$

$i=0.065$
$n=4$
b) Semi-annually
$P=$
$A=5000$

$$
\begin{aligned}
p & =5000(1+0.0325)^{-8} \\
& =3871.23
\end{aligned}
$$

$i=0,0325$
$n=s$
c) Monthly

$$
\begin{aligned}
P= & \\
A=5000 & =5080\left(1+\frac{0.065}{12}\right)^{-48} \\
i=\frac{0.065}{18} & =3857.46
\end{aligned}
$$

d) Weekly
$P=$
$A=5000$
$i=\frac{0.065}{32}$
$P=5000\left(1+\frac{0,065}{52}\right)^{-208}$
$n=208$

$$
=3855.85
$$

e) Daily

$$
\begin{aligned}
P & = & \\
A=5000 & & =5000\left(1+\frac{0.065}{365}\right)^{-1400} \\
i=\frac{0.065}{365} & & =3855.35
\end{aligned}
$$

