Recursive Formulas

So far, we have learned to find the general term of an arithmetic or geometric sequence using...

ARITHMETIC

GEOMETRIC $t_n = ar^{n-1}$

 $t_n = a + (n-1)d$

These formulas are **EXPLICIT** in nature. That means, they are definite or clearly expressed. Using these formulas, we can find **ANY** term.

RECURSION – The process of describing the next term in a sequence by relating it to the previous term. In other words, the recursion formula will tell us how to get a term, **BUT ONLY IF** we know the previous one.

For example, in order to know the 50th term, you must know the 49th. In order to know the 49th, you must know the 48th, etc...

A RECURSION FORMULA HAS 2 COMPONENTS

1. An initial condition that provides a starting point.

i.e. $t_1 = 8$ (start at 8) $t_1 = -5$ (start at -5)

2. A recursive formula that tells how to derive a term using the one that came previous.

i.e. $t_n = t_{n-1} + 2$ means: _____

 $t_n = 3t_{n-1}$ means: _____

EXAMPLE 1 – Find the first 6 terms defined by the recursive formula : $t_1 = 5$ $t_n = t_{n-1} + 3$

Recursion Formula Practise Questions

Write the first 5 terms of the sequence defined by $t_1 = 1$, $t_n = t_{n-1} + n$, n > 1.

2)

4).

1)

Write a recursion formula for each sequence: a) 4, 11, 18, 25,...

b) 32, 26, 20, 14,...

c) 1, -10, 100, -1000,...

d) 32, 16, 8, 4,...

e) 4, 5, 20, 100, 2000, ...

3) A sequence is defined by the recursion formula $t_1 = 3$, $t_n = t_{n-1} + 10$, n > 1. Determine t_{100} .

Write the first 5 terms of the sequence defined by $t_1 = 1$, $t_2 = 2$, $t_n = t_{n-1} + t_{n-2}$, n > 2.