Recursine Farmulas

So far, we have learned to find the general term of an arithmetic or geometric sequence using...

$$
\begin{array}{lr}
\text { ARITHMETIC } & \text { GEOMETRIC } \\
t_{n}=a+(n-1) d & t_{n}=a r^{n-1}
\end{array}
$$

These formulas are EXPLICIT in nature. That means, they are definite or clearly expressed. Using these formulas, we can find ANY term.

RECURSION - The process of describing the next term in a sequence by relating it to the previous term. In other words, the recursion formula will tell us how to get a term, BUT ONLY IF we know the previous one. For example, in order to know the $50^{\text {th }}$ term, you must know the $49^{\text {th }}$. In order to know the $49^{\text {th }}$, you must know the $48^{\text {th }}$, etc...

A Recursion Formula has 2 components

1. An initial condition that provides a starting point.

$$
\text { i.e. } \quad \begin{aligned}
t_{1} & =8(\text { start at } 8) \\
& t_{1}
\end{aligned}=-5(\text { start at }-5)
$$

2. A recursive formula that tells how to derive a term using the one that came previous.
i.e. $t_{n}=t_{n-1}+2$ means: \qquad

$$
t_{n}=3 t_{n-1} \quad \text { means: }
$$

\qquad

EXAMPLE 1 - Find the first 6 terms defined by the recursive formula : $t_{1}=5 \quad t_{n}=t_{n-1}+3$

Recursion Formula Practise Questions

1) Write the first 5 terms of the sequence defined by $t_{1}=1, t_{n}=t_{n-1}+n, n>1$.
2) Write a recursion formula for each sequence:
a) $4,11,18,25, \ldots$
b) $32,26,20,14, \ldots$
c) $1,-10,100,-1000, \ldots$
d) $32,16,8,4, \ldots$
e) $4.5,20,100,2000, \ldots$
3) A sequence is defined by the recursion formula $t_{1}=3, t_{n}=t_{n-1}+10, n>1$. Determine t_{100}.
4). Write the first 5 terms of the sequence defined by $t_{1}=1, t_{2}=2, t_{n}=t_{n-1}+t_{n-2}, n>2$.
