geometric sequences

A sequence where every successive term is found by MULTIPLYING BY THE SAME NUMBER is called GEOMETRIC

CHECK: Pick any term, divide it by the previous term. If the result is always the same no matter where in the sequence you begin, then the sequence is geometric.

EXAMPLE 1 – Is the sequence geometric?

a) 2, 6, 18, 54, 162, 486, ...

The terms are separated by a **COMMON RATIO** of 3 (we will call it "r")

12, 6, 3, 1.5, 0.75, 0.375, ... b)

The terms are separated by a **COMMON RATIO** of

EXAMPLE 2 – Find the general term of the following geometric sequence

3, -12, 48, -192, ... the common ratio is _____

Observe and continue the pattern...

Symbolically...

1st term	3	a	
2 nd term	3(-4)	ar	
3 rd term	3(-4) (-4)	ar ²	
4 th term	3	a	
5 th term	3	a	
6 th term	3	а	

Do you see the pattern?

Geometric Sequences continued...

CONCLUSION: To find the general term of an geometric sequence

 $t_n =$

where $oldsymbol{a}$ is the $_$	
----------------------------------	--

n is the		of the	
-----------------	--	--------	--

and *r* is the ______

EXAMPLE 3 – Given the geometric sequence 3, 6, 12, 24, ...

a) Find the 14^{th} term

b) Which term is 384?

EXAMPLE 4 – The 3rd term of an geometric sequence is 20 while the 6th term of the same sequence is –540. Find the general term of the sequence and state the first 6 terms.