geometric sequences

A sequence where every successive term is found by MULTIPLYING BY THE SAME NUMBER is called GEOMETRIC
CHECK: Pick any term, divide it by the previous term. If the result is always the same no matter where in the sequence you begin, then the sequence is geometric.

EXAMPLE 1 - Is the sequence geometric?
a) $2,6,18,54,162,486, \ldots$

The terms are separated by a COMMON RATIO of 3 (we will call it " r ")
b) $12,6,3,1.5,0.75,0.375, \ldots$

The terms are separated by a COMMON RATIO of \qquad

EXAMPLE 2 - Find the general term of the following geometric sequence

$$
3,-12,48,-192, \ldots \quad \text { the common ratio is }
$$

Observe and continue the pattern...
Symbolically...

$1^{\text {st }}$ term	3	\boldsymbol{a}
$2^{\text {nd }}$ term	$3(-4)$	$\boldsymbol{a r}$
$3^{\text {rd }}$ term	$3(-4)(-4)$	$\boldsymbol{a r} \mathbf{r}^{2}$
$4^{\text {th }}$ term	3	\boldsymbol{a}
$5^{\text {th }}$ term	3	\boldsymbol{a}
6 $^{\text {th }}$ term	3	\boldsymbol{a}

Geometric Sequences continued...

CONCLUSION: To find the general term of an geometric sequence

$$
t_{n}=
$$

where \boldsymbol{a} is the \qquad \boldsymbol{n} is the \qquad of the \qquad and \boldsymbol{r} is the \qquad
\qquad

Example 3 - Given the geometric sequence $3,6,12,24, \ldots$
a) Find the $14^{\text {th }}$ term
b) Which term is 384 ?

EXAMPLE 4 - The $3^{\text {rd }}$ term of an geometric sequence is 20 while the $6^{\text {th }}$ term of the same sequence is -540 . Find the general term of the sequence and state the first 6 terms.

