Day 1: Prerequisite Skills

Primary Trigonometry Ratios and CAST Rule: sine, cosine, tan Angles and Their Location in the $x y$-plane

- An angle is formed when a ray is rotated about a fixed point called the vertex.
- The ray is called the initial arm and the beginning of the angle and the terminal arm at the end of the angle.
- Angles are often labelled with Greek letters, such as $\theta, \alpha, \beta, \gamma$.
- An angle is in standard position if the vertex of the angle is at the origin and the initial arm lies along the positive x axis. The terminal arm can be anywhere on the arc of rotation. See Diagram 1.
- An angle can be positive or negative. A positive angle is formed by counter-clockwise rotation of the terminal arm. A negative angle is formed by a clockwise rotation of the terminal arm.
- The xy-plane is divided into four quadrants by the x and y axes. The terminal arm can lie anywhere in the xy -plane. See Diagram 2.
- Co-terminal angles share the same terminal arm and the same initial arm.
- The principal angle is the angle between o° and 360°.
- The related angle is the angle formed by the terminal arm of an angle in standard position and the x-axis. The related acute angle is always positive and lies between 0° and 90°.

Diagram 1:

vertex

Diagram 2:

Reciprocal Trigonometry Ratios: cse, sec, cot

$$
\csc \theta=\frac{1}{\sin \theta}
$$

$$
\sec \theta=\frac{1}{\cos \theta}
$$

$$
\cot \theta=\frac{1}{\tan \theta}
$$

Exact Trigonometry Ratios of special angles $30^{\circ}, 60^{\circ}, 90^{\circ}$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
30°	$1 / 2$	$\sqrt{3} / 2$	$1 / \sqrt{3}$
45°	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
60°	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3} / 1$
90°	1	0	undefined

The Unit Circle

UNIT CIRCLE :

- Radius = $\mathbf{1}$ unit
- Centre at origin
- θ in standard position

Distance between 2 points:

$$
d=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}
$$

Trigonometry Identities

The Pythagorean Identities: $\sin ^{2} \theta+\cos ^{2} \theta=1$

Quotient Identities $\quad \tan \theta=\frac{\sin \theta}{\cos \theta}$

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Example 1. Determine the EXACT primary trig ratios for the following angles:
a) 60°
b) $225^{\circ} \quad \alpha=45^{\circ}$
c) $330^{\circ} \quad \alpha=30^{\circ}$
d) $120^{\circ} \quad \alpha=60$
$\sin 60=\frac{\sqrt{3}}{2}$
$\sin 225^{\circ}=-\frac{\sqrt{2}}{2}$
$\sin 330^{\circ}=-1 / 2$
$\sin 120^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 60=1 / 2$
$\cos 225^{\circ}=-\frac{\sqrt{2}}{2}$
$\cos 330^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 225^{\circ}=1$
$\tan 330^{\circ}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}$
$\cos 120=-1 / 2$
$\tan 60=\sqrt{3}$

$$
\tan 120^{\circ}=-\sqrt{3}
$$

$\csc 225=-\sqrt{2}$

$$
\csc 330^{\circ}=-2
$$

$\csc 60=2 / \sqrt{3}=\frac{2 \sqrt{3}}{3}$

$$
\sec 330^{\circ}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}
$$

$\sec 60=2$

$$
\cot 60=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} \quad \cot 225^{\circ}=1
$$

$$
\cot 330^{\circ}=-\sqrt{3} \quad \cot 120^{\circ}=\frac{\sqrt{3}}{3}
$$

$$
\left.\begin{aligned}
\theta & =360-\alpha \\
& =360-37^{\circ} \\
& =323^{\circ}
\end{aligned} \right\rvert\, \begin{aligned}
\alpha & =\cos ^{-1}(4 / 5) \\
& =37^{\circ}
\end{aligned}
$$

