Day 1: Prerequisite Skills

<u>Primary Trigonometry Ratios and CAST Rule: sine, cosine, tan</u> Angles and Their Location in the xy-plane

- An angle is formed when a ray is rotated about a fixed point called the **vertex**.
- The ray is called the **initial arm** and the beginning of the angle and the **terminal arm** at the end of the angle.
- Angles are often labelled with Greek letters, such as θ , α , β , γ .
- An angle is in **standard position** if the vertex of the angle is at the origin and the initial arm lies along the positive x-axis. The terminal arm can be anywhere on the arc of rotation. See Diagram 1.
- An angle can be positive or negative. A **positive angle** is formed by counter-clockwise rotation of the terminal arm. A **negative angle** is formed by a clockwise rotation of the terminal arm.
- The xy-plane is divided into four quadrants by the x and y axes. The terminal arm can lie anywhere in the xy-plane. See Diagram 2.
- Co-terminal angles share the same terminal arm and the same initial arm.
- The **principal angle** is the angle between *o*^o and *360*^o.
- The **related angle** is the angle formed by the terminal arm of an angle in standard position and the *x*-axis. The related acute angle is always positive and lies between 0° and 90°.

Diagram 1:

terminal arm

Diagram 2:

Reciprocal Trigonometry Ratios: csc, sec, cot

2 1	2 1	1
$\csc\theta =$	$\sec\theta =$	$\cot \theta =$
$\sin heta$	$\cos heta$	$\tan \theta$

Exact Trigonometry Ratios of special angles 30°, 60°, 90°

		_	_	Â
θ	$\sin \theta$	$\cos\theta$	tanθ	52
300	1/2	53/2	1/53	45
45°	52/2	52/2	1	
60°	13/2	1/2	53/1	145 11
90°	1	U	Undefined	l l

The Unit Circle

UNIT CIRCLE :

- Radius = 1 unit
- Centre at origin
- heta in standard position

Distance between 2 points:

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Trigonometry Identities

The Pythagorean Identities: $\sin^2\theta + \cos^2\theta = 1$

Quotient Identities $\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Example 1. Determine the EXACT primary trig ratios for the following angles:

a)
$$60^{\circ}$$

b) 225° $d = 45^{\circ}$
c) 330° $d = 30^{\circ}$
d) 120° $d = 60^{\circ}$
Sin $120^{\circ} = \sqrt{3}^{\circ}$
Cos $60 = \frac{\sqrt{3}}{2}$
Sin $120^{\circ} = \sqrt{3}^{\circ}$
Cos $120^{\circ} = \sqrt{3}^{\circ}$
Cos $120^{\circ} = \sqrt{3}^{\circ}$
Cos $120^{\circ} = \sqrt{3}^{\circ}$
Lan $60^{\circ} = \sqrt{3}$
 $4an 225^{\circ} = 1$
 $4an 225^{\circ} = 1$
 $4an 225^{\circ} = 1$
 $5c (225 = -\sqrt{2})$
Sec $60 = \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
 $5c (225 = -\sqrt{2})$
Sec $60 = \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
 $5c (225 = -\sqrt{2})$
Sec $60 = \frac{2}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
 $5c (20^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
 $5c (12^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
 $5c (12^{\circ} = -2)$
Sec $12^{\circ} = -2$
 $5c (330^{\circ} = -2)$
 $5c (330^{\circ} = -2)$
 $5c (330^{\circ} = -2)$
 $5c (12^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
 $5c (12^{\circ} = -2)$
 $5c (330^{\circ} = -\sqrt{3})$
 $5c (12^{\circ} = -2)$
 $5c$